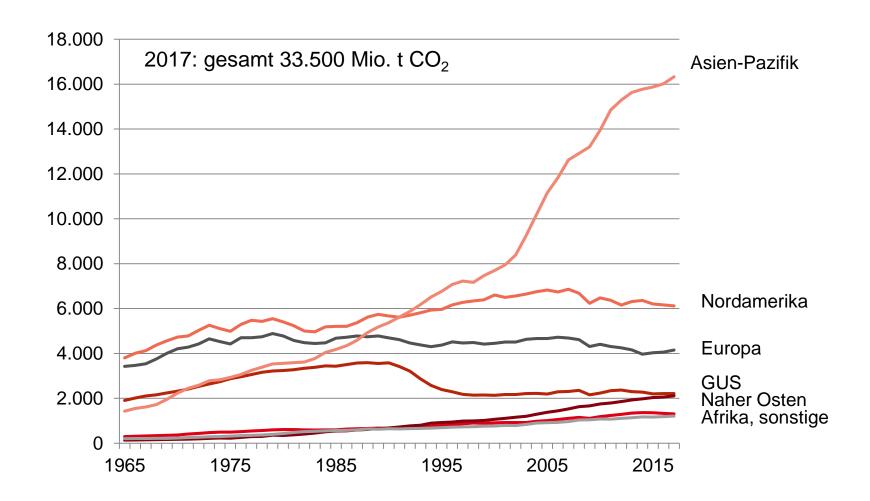
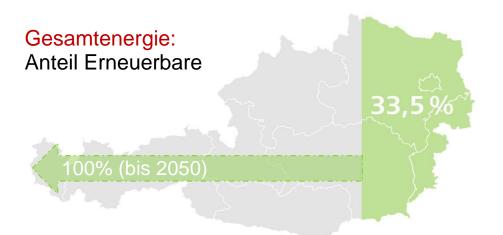

Herausforderungen der erneuerbaren Energiezukunft

IEWT, 14. Februar 2019 Dipl.-Ing. Franz Mittermayer

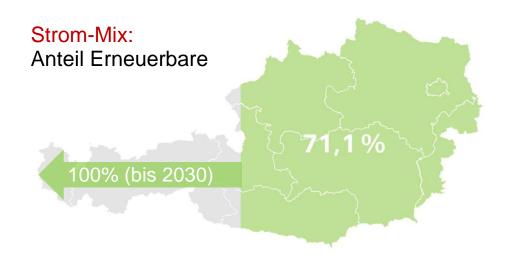
EVN


Anteile am weltweiten Energieverbrauch Asien-Pazifik 49 %, Europa 12 %, Österreich

0,2 %



Entwicklung CO₂ Emissionen seit 1965: Vervielfachung in Asien, Europa stagnierend



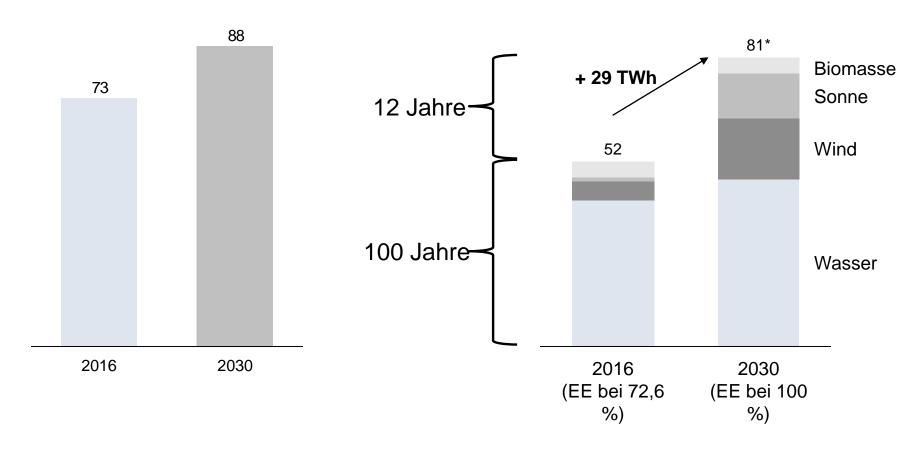
Gesamtenergie- und Strom-Mix in Österreich

- 33,5 %: Anteil Erneuerbare an Gesamtenergie
- 71,7 %: Anteil Erneuerbare am Strommix

Herausforderungen:

- Gesamtenergieverbrauch senken
- Rasch steigenden Anteil Strom an Gesamtenergie erneuerbar decken

Quelle: Umweltministerium, Stand 2017 (Zahlen aus 2016)

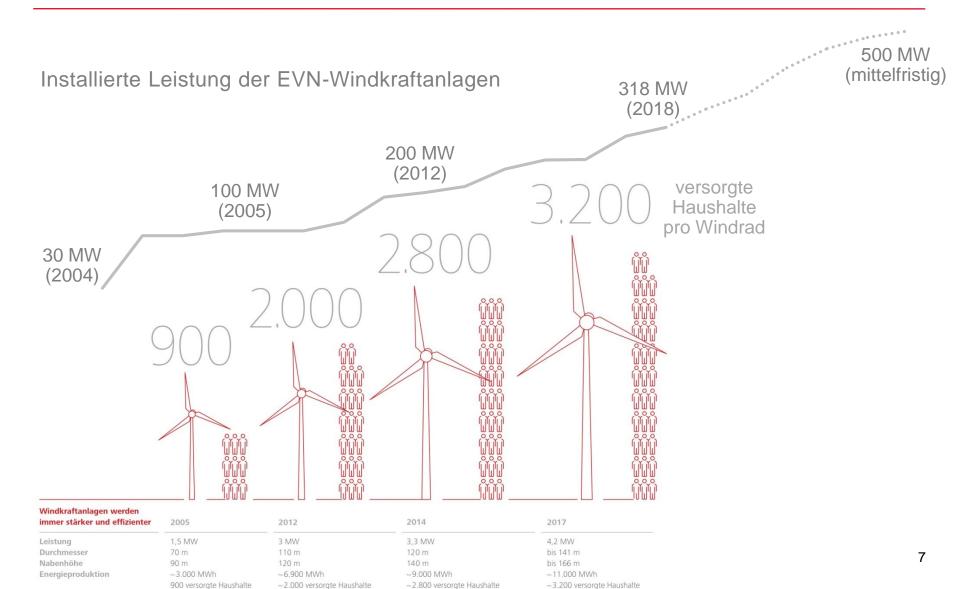

Plan der österreichischen Bundesregierung: 100 % EE-Strom bis 2030 erfordert Ausbau von 29

T₩h

Stromverbrauch in Österreich in TWh

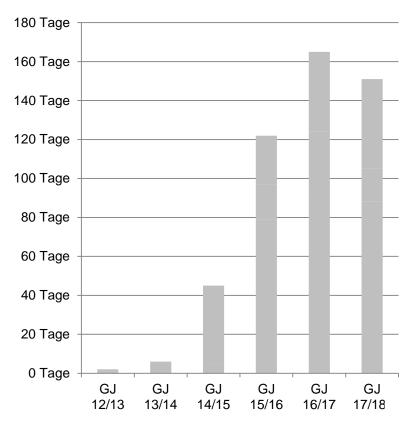
Stromaufbringung aus EE in Österreich in TWh

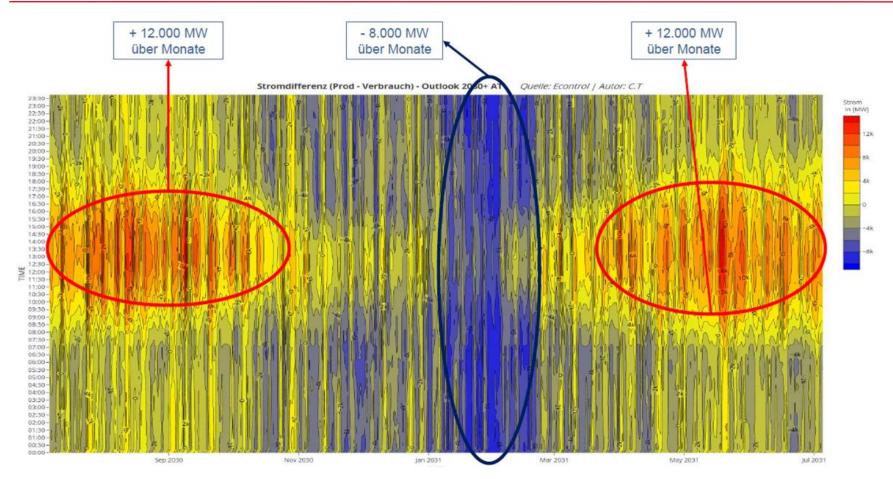
Quelle: Austrian Energy Agency - Erstevaluierung der Zieldefinition der österreichischen Klima- und Energiestrategie, August 2018 *Anmerkung: fossiler, industrieller Eigenverbrauch und Regel- und Ausgleichsenergie iHv 5-7 TWh von EE-Ziel der mission2030 nicht erfasst


Herausforderung 1: Technologien für 29 TWh an erneuerbare Strom

2030 bei 100 % Erneuerbarem Strom **Aufbringung 2016** + 6 Wasserkraft 999999999 + 12 TWh Wind ^ = 5.4 TWh **Photovoltaik** = 1.1 TWh + 12 TWh

Windenergie wird immer effizienter – EVN seit 2005 mit starkem Ausbauprogramm




Thermische Kraftwerke sind auch zukünftig das Rückgrat einer ausfallsicheren

Stromversorgung

- Thermische Kraftwerke der EVN im GJ 2017/18 an 157 Tagen für Netzreserve im Einsatz
- Gaskraftwerke sind...
 - ...dauerhaft abrufbar,
 - ...hochgradig regelbar und
 - ...nützen die bestehende Infrastruktur
- Investitionsanreize für Sicherung der Kapazitäten unumgänglich

Herausforderung 2: Erneuerbare Erzeugung führt z **EVN** Überdeckung im Sommer & Unterdeckung im Winter

Speicherung unbedingt notwendig

Quelle: Jahreszeitliches Auftreten von Überschüssen und Unterdeckungen im Jahr 2030, Simulation RAG Austria AG (Annahmen: Basis = 2017, Solarstromproduktion in \ddot{O} x 20, Windstromproduktion in \ddot{O} x 3, Wasserstromproduktion unverändert gegenüber 2017, Stromverbrauch + 30 %)

Power-to-Gas: Saisonale Speicherung noch mit hohem Aufwand verbunden

Erdgasspeicher der RAG Energy Storage GmbH

- Deckung des Bedarfs an großvolumigen Speichern durch unterirdische Gasspeicher
- Technische Möglichkeiten
 - H²-Elektrolyse, Biogas, synthetisches Gas
- EVN-Tochter RAG derzeit mit
 Speicher-kapazitäten von ca. 6
 Milliarden m³
 - Entspricht ca. 70 % des Erdgasjahresbedarfs in Ö
- Forschungsprojekte (EVN, RAG, OMV)
 - Underground Sun Storage, Underground Sun Conversion, wind2hydrogen in Auersthal

Elektroauto
Je 2-3 MWh

Wärmepumpe ca. 3-8 MWh

- Erwarteter Leistungsanstieg im Niederspannungsnetz:
 - E-Mobilität, Wärmepumpen, steigende
 Anzahl elektrischer Geräte im Haushalt
- □ Extremsituation aus Netzsicht bei:
 - Fehlen dezentraler Erzeugung
 - tiefen Temperaturen (Heizstäbe / Wärmepumpen)
 - Gleichzeitigkeit (zB Aufladen von E-Autos)
- Versorgungssicherheit und Netzstabilität:
 - trotz steigendem Anteile an volatiler Erzeugung
 - trotz Abnahme steuerbarer Großkraftwerke

PV & E-Mobilität im städtischen Gebiet: Zweiter Feldversuch in Echsenbach

☐ Feldversuch Echsenbach:

- Neue Einfamilienhaus-Siedlung in Echsenbach
- "All electricity" (Wärmepumpen und E-Mobilität)
- 24 F-Autos
- "Faires Laden" über Wallboxes

☐ Joulie:

- Optimiert Zusammenspiel zwischen PV,
 Batteriespeicher und Verbrauchern
- Demand-Site-Management: Laden der E-Autos gesteuert durch "Netzzustand"

Zusammenfassung und Ausblick

- Beste Rahmenbedingungen für Ausbau der Erzeugung notwendig
 - Klärung der Finanzierung
 - Volkswirtschaftliche Effizienz sicherstellen
 - Alle Technologien werden benötigt: Wind, Biomasse, PV und Wasser
- □ Ziele bei Effizienz und CO2 erfordern deutliche Elektrifizierung
 - E-Mobilität ausbauen
 - Wärmepumpen und Nahwärme ausbauen
- Infrastruktur muss mitwachsen
 - Lokale Zwischenspeicherung und zentrale Saisonalspeicherung unumgänglich
 - Steuerung und Verstärkungen im Verteilnetz
 - Für Knappheitssituationen thermische Reserve vorhalten

