

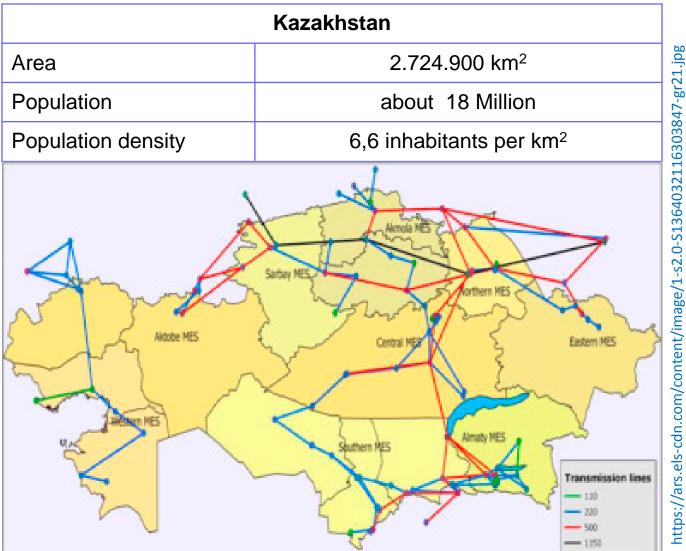
Analysis of the energy efficiency of 110/6kV distribution network in an oil producing enterprise in Kazakhstan

Prepared by: Saulesh Minazhova MSc, tutor at Power Engineering Department

Supervisor: Dr.-Ing., professor Nassipkul Dyussembekova Head of Power Engineering Department

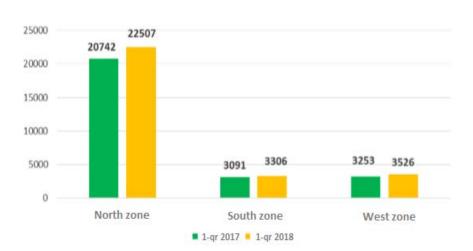
The oldest and one of the most prestigious technical universities in Kazakhstan, known for the developments in the fields of mining and oil business. For more than 80 years, the university has been synonymous with technological progress and leadership in Kazakhstan. Although Satbayev University's business card is dominated by technical specialties, it is an interdisciplinary university where architecture and management are taught, too.

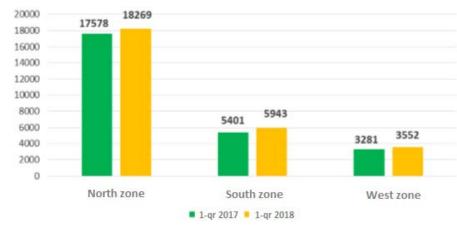
International partner universities



AGENDA

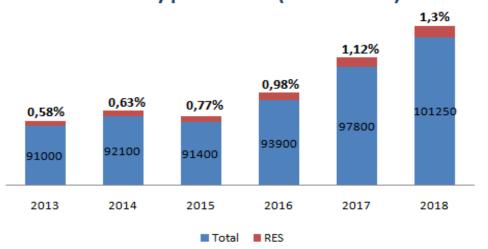
- Energy sector of Kazakhstan;
- Required standards for the power quality;
- Motivation;
- Description of the object;
- Topology of the object;
- Methodology of the analysis;
- Results.

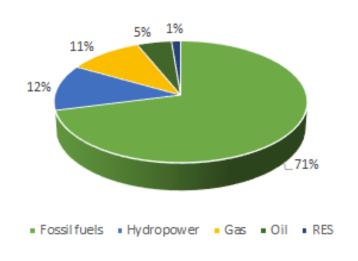

ENERGY SECTOR OF KAZAKHSTAN

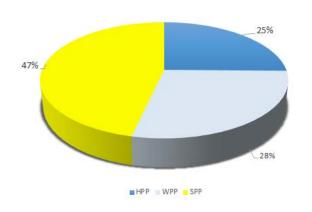


ENERGY SECTOR OF KAZAKHSTAN

Balance of generation and consumption of electricity in Kazakhstan




	1 st qr. 2017 (mil.kWh)	1st qr. 2018 (mil.kWh)	Difference	
			in <u>mil.kWh</u>	in %
Generation	27 085,5	29 339,2	2 253,7	7,7
Consumption	26 259,7	27 763,3	1 503,6	5,4
Electricity flow	-825,8	-1 575,9	-750,1	48
Russia	-824,8	-1 575,3	-750,5	
Central Asia	-1,0	-0,6	-0,4	


ENERGY SECTOR OF KAZAKHSTAN

The share of renewable energy in total electricity production (million kWh)

REQUIRED STANDARDS FOR POWER QUALITY

The main indicators of the quality of electrical energy according to GOST 13109-97

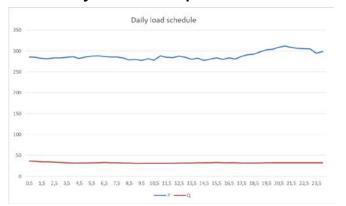
Power factor	≥ 0,89 for 110-220 kV		
	≥ 0,92 for 6-35 kV		
	≥ 0,93 for 0,4 kV		

Order of the Minister for Investment and Development of the Republic of Kazakhstan dated 03.31.2015

Nº	Electricity property	Power quality indicator	Standardized values of quality indicators	
1	Voltage deviation	Steady voltage deviation δU_X	± 5% normal acceptable value ± 10% maximum permissible value	
2	voltage change <u>ŏUt</u> ∂U _t = <u>U</u>		Determined by $\delta U_t = \frac{ U_i - U_{i+1} }{U_{HOM}} \cdot 100$	
		Dose of Flicker	Determined by $P_t = \frac{1}{T_{ocp}} \int \sum g_f^2 \int \partial U_f^2 dt$	
3	Non-sinusoidal voltage	The distortion coefficient of the sinusoidal voltage curve K _U	Determined by $K_{U} = \frac{\sqrt{\sum_{n=2}^{N} U_{(n)}^{2}}}{U_{HOM}} \cdot 100\%$	
		Coefficient of the n ^{fn} harmonic component of the voltage, K _{ii} (n).	Determined by $K_{U(n)} = \frac{U_{(n)}}{U_{HOM}} \cdot 100\%$	
4	The asymmetry of the three-phase voltage system	Voltage unbalance factor by reverse sequence K _{2U}	2% - normally acceptable value; 4% - maximum permissible value	
		Voltage unbalance factor on zero sequence K _{0U}	2% - normally acceptable value; 4% - maximum permissible value	
5	Frequency deviation	Frequency deviation of	± 0.2 Hz - normally acceptable value; ± 0.4 Hz - maximum permissible value	
6	Voltage failure	The duration of the voltage dip ∆tp	Not standardized	
7	Voltage impulse	Impulse voltage, U	Not standardized	
8	Short-term overvoltage	Time overvoltage coefficient, KovvU	Not standardized	

MOTIVATION

- Power quality (ΔU, ΔW, cosφ)
- -Reactive power management
- (no reqirements)
- Improving economical and ecological aspects

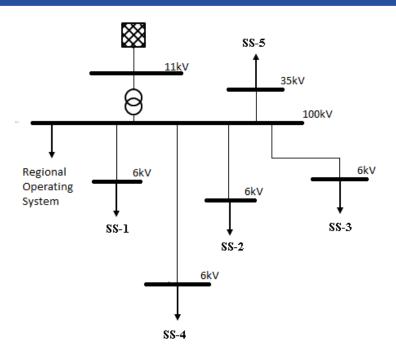


DESCRIPTION OF THE OBJECT

The enterprise has its **own** gasturbine **power plant** with a capacity of **160 MW**, which supplies its facilities with electricity, and transfers part of the generated energy to the regional grid company.

There are 5 main substations (SS 110/6kV), which consist of 26 transformers and more than 100 package transformer substation (PTS 6/0,4kV).

Electricity consumption in Winter



Electricity consumption in Summer

TOPOLOGY OF THE OBJECT

Name of the objects	Number of feeders	Number of PTS	Total power of PTS, κVA		
0.4 kV voltage measurements					
SS-1	7	35	3 826		
SS-2	5	28	993		
SS-3	5	31	1 617		
SS-4	2	15	549		
Total	19	109	6 985		

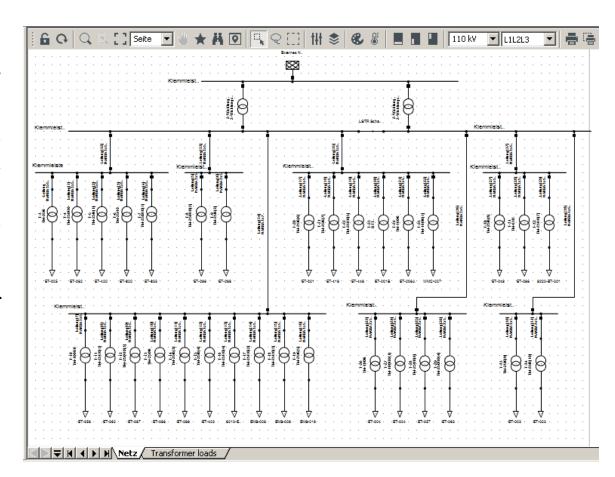
METHODOLOGY OF THE ANALYSIS

A

• Initial network mode

В

 Network operation mode when disconnecting an underloaded transformer



METHODOLOGY OF THE ANALYSIS

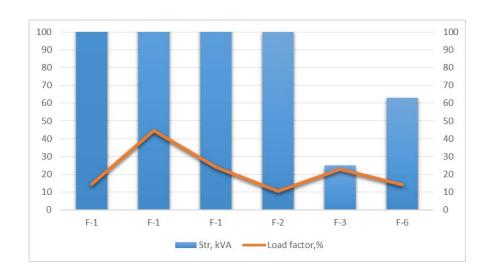
The analysis was carried out using the software Power factory DigSilent.

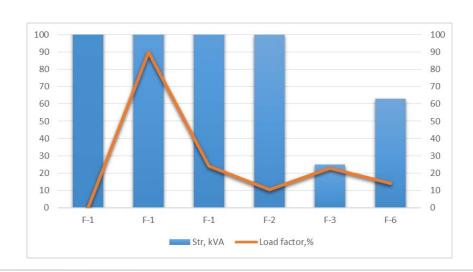
Through this program, a 6/0,4kV distribution network was modeled. The following factors were taken into account in the simulation:

- Power supply source;
- Passport data of transformers and cables;
- Daily schedules of loads of the electric power consumers.

RESULTS

Due to the fact that in Kazakhstan there is no manual for energy-efficient analysis of electrical equipment, this analysis was conducted on the basis of a reference document on the best available methods for improving energy efficiency in the European Union.


According to the results of the analysis carried out on option A, many underused transformers were identified. It would seem that underutilization for transformers is a positive effect, which leads to an increase in the service life of equipment, however, as shown by field tests of the European Union, under-utilization of electrical equipment is negative in terms of energy efficiency. In this case, the European Union proposes to hold a series of events to improve the energy efficiency. One of them is considered in option B.


Nº	Feeder	Name of the PTS	Str, kVA	Pinst kV	Prons kV	Load factor,%
	recuei	realite of the First	SS-1	T moty it	r cons, ke	2000 10001770
1	F-1	1E-9200-ET-001A	630	500	72,4	11,49206349
2	F-1	1E-9200-ET-006A	160	120	71,4	44,625
3	F-1	WMC-9210-ET-007	160	75	38,2	23,875
4	F-2	10-9200-ET-004	100	101,9	10,3	10,3
5	F-3	10-9200-ET-062	25	21,4	5,7	22,8
6	F-6	10-9220-ET-001	63	12,5	8,9	14,12698413
	Į.		SS-2			
7	F-3	10-9200-ET-011	100	62,7	15,4	15,4
8	F-4	20-9400-ET-002	25	5	1,8	7,2
9	F-5	10-9200-ET-037	100	72	3,93	3,93
10	F-11	30-9400-ET-002	25	6	4,37	17,48
11	F-11	20-9400-ET-05	25	5	1,02	4,08
	•		SS-3	•		
12	F-2	10-9200-ET-012	100	36,1	14,88	14,88
13	F-2	30-9400-ET-010	25	6	2,06	8,24
14	F-3	10-9200-ET-006	100	86,7	36,81	36,81
15	F-3	10-9200-ET-015	25	21,4	6,05	24,2
16	F-3	10-9200-ET-034	25	14,7	3,28	13,12
17	F-3	30-9400-ET-009	25	6	4,12	16,48
18	F-8	30-9400-ET-004	25	6	2,14	8,56
19	F-16	10-9200-ET-041	100	79,7	6,71	6,71
20	F-18	10-9200-ET-007	100	78,7	23,5	23,5
21	F-18	20-9400-ET-001	25	5	4,35	17,4
SS-4						
22	F-20	10-9200-ET-042	100	120	24,2	24,2
23	F-20	10-9200-ET-095	100	16,8	7,75	7,75
24	F-20	EMS-9200-ET-017	25	7,4	1,26	5,04
25	F-21	10-9200-ET-031	25	35,2	10,8	43,2
26	F-21	10-9200-ET-039	25	14,7	4,46	17,84
27	F-21	10-9200-ET-048	25	15,9	7,1	28,4
28	F-21	EMS-9200-ET-006	10	7,4	0,34	3,4
29	F-21	30-9400-ET-006	25	6	2,12	8,48

Reference document on best available techniques for Energy Efficiency, European commission, February 2009

RESULTS

11th International Energy Conference, February 13-15, 2019, TU Wien, Austria

THANK YOU FOR ATTENTION!

Saulesh Minazhova

MSc, tutor at "Power Engineering"
Department
Institute of architecture,
construction and power
engineering after T.K. Bassenov
Satbayev University

Tel.: +7 (727) 257-74-65

Mob.: +7 708 769 44 95

email: s.minazhova@gmail.com

