FfE

Flexibility potential of industrial thermal networks through hybridization

PI

0000

0000

0000

0000

0000

0000

2019

Britta Kleinertz, Anna Gruber, Michael Kolb, Frank Veitengruber, Serafin von Roon

22.02.2019 IEWT 2019

Table of contents

Motivation and research target
Hybridization and flexibility potential of industrial networks

\sim	•	1 41 1
(onc	lusions and	

Hybridization as a suitable measure for system adapted thermal energy supply

Possibilities for coupling electricity and heating sector

Centralized network-based

Power-to-Heat units

Decentral Power-to-Heat units▶ 86 % of households

Decrease in specific costs (investment, maintenance)

Industrial network-based Power-to-Heat units Cross-industry application!!! \geq ??? companies ➢ ??? PJ of 2000 PJ

Further advantages:

- Technicians on-site
- Always backup capacity available

Table of contents

Motivation and research target
Hybridization and flexibility potential of industrial networks

Conclusions and outlook

Current potential for hybridized industrial heat networks – **FFE** a step-wise approach

Temperature levels Ene	ergy demand Limitations	Technologies	Interconnection	Flexible load
------------------------	-------------------------	--------------	-----------------	---------------

Potential for industrial heat networks - typical temperatures and application

Temperature levels	Energy demand	Limitations	Technologies	Interconnection	Flexible load
Network	Flow temper	ature	Exemplary Application		

High pressure steam	> 220 °C, max. 240 °C	Chemical reactions, drying
Medium pressure steam	> 160 °C	Chemical processes, Hygienic steam for food industry, paint shop
Steam	> 120 °C	Primary heat network temperature (temperature downgrade towards secondary network)
High temperature	~ 90 °C	Metal processing, surface heating, domestic hot water
Medium temperature	~ 50 °C	Surface heating

> Temperature levels differ by industrial branch and individual thermal requirements

Relevant heat demand can be differentiated into space heating, domestic hot water und process heating

Temperature levels Ene	ergy demand	Limitations	Tech	nnologies	Interconnection Flexible load
Mineral processing Manufacture of basic metals Non-ferrous metals, foundries Metal processing Manufacture of machinery Manufactur of transport	//////////////////////////////////////	,		Fff	 Fraunhofer ISI: Anwendungsbilanz 2017 Industrial energy supply by demand type, industrial branch and energy source: Thermal energy demand: 2,039 PJ Heat demand: 1,984 PJ Process heat demand: 1,815 PJ Process heat accounts for 86 % of industrial thermal energy demand
	0 100	200 Energy demand		00 50	00

Process heat Space heating Domestic hot water Air conditioning Cooling

> For process heat an in-detail analysis of temperature levels is needed

Relevant is only the process heat demand below maximum network supply temperatures

■ 0 °C - 60 °C ■ 60 °C - 100 °C ■ 100 °C - 120 °C ■ 120 °C - 180 °C ■ 180 °C - 240 °C ■ > 240 °C

Focus on process heat demand T < 240 °C, domestic hot water and surface heating, approx. 601 PJ</p>

Relevant is only the process heat currently provided by fossil fuels

Focus only on T < 240 °C and fossil fuelled heat supply</p>

Data combination leads to exclusion of several industrial branches

Focus only on T < 240 °C and fossil fuelled heat supply, approx. 324 PJ</p>

Relevant is only the currently central provided heat

▶ Focus on T < 240 °C, fossil fuelled and centrally provided heat, approx. 235 PJ

Relevant technologies for hybridization and application priority

> Priority between technologies depends on temperature and economic conditions

Situation-dependent interconnection of heat supply units Temperature levels Energy demand Limitations Technologies Interconnection Flexible load $\rho \cdot c_p \left(T_{flow} - T_{return} \right)$ $\dot{Q}_{supply} = \dot{V}$ Parallel connection Series connection Volume flow in m³/s Volume flow in m³/s Heat generator 1 Heat Heat generator generator 2 Heat generator 2 T_{return} T_{return} T_{flow} T_{flow} Temperature demand in °C Temperature demand in °C

Heat pump + fuel-based technology + electrode boiler -> Extreme boundary situations

> In extreme situations prioritization is simple

Heat pump + fuel-based technology + electrode boiler -> Medium situations

> In medium situations suitable combinations are relevant

Actual flexible load is entirely dependent on set technology and set full load hours for design

Table of contents

Motivation and research target
 Hybridization and flexibility potential of industrial networks
 Conclusions and outlook

Evaluation of potential ways for provision of flexibility from **FFE** industrial thermal networks

Hybrid system operation

- Network based heat supply
 - Backups needed
 - Large potential
- Network based heat suitable for hybrid systems

Usage of thermal storages

- Currently mainly used for
 - provision of supply security
 - Maximize heat generation unit efficiency
- Vast potential

Usage of network overheating

- Limited by
 - Missing heat exchangers for decoupling of supply and demand
- Low short time potential in networks with primary and secondary network

Britta Kleinertz

Wissenschaftliche Mitarbeiterin/ Projektingenieurin Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49(0)89 158 121– 39 Email: bkleinertz@ffe.de

Dr.-Ing Anna Gruber

Prokuristin Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49(0)89 158 121– 62 Email: agruber@ffe.de

Dr. –Ing. Serafin von RoonGeschäftsfültForschungsgesellschaft fürEnergiewirtschaft mbHTel.:+49(0)89 158 121–0Email:sroon@ffe.de

Forschungsgesellschaft für Energiewirtschaft mbh Am Blütenanger 71 80995 München Tel.: +49(0)89 158 121 – 0 Email: <u>info@ffe.de</u> Internet: <u>www.ffegmbh.de</u> Twitter: @FfE_Muenchen

