0000 **Reduction of Curtailment** 0000 by Residential DSM –Secondary Effects on Electricity Markets

0000

AT Y

0000

Michael Hinterstocker

FÆ

14.02.2019 IEWT, Wien

Outline

Residential Demand-Side Management for Curtailment Reduction Approaches for Quantifying Market Effects of Load Shifting Modelled Prices and Price Changes

Summary

Residential Demand-Side Management for Curtailment Reduction

Curtailment of Renewables

- Increasing installed capacity of volatile renewables (solar, wind)
- Curtailment of generation which exceeds grid capacity
- Potentially improved integration of renewables by reduction of curtailment
- Reduction possible by load increase

Residential Demand-Side Management

- Variable electricity rates as incentives for flexible operation times of household appliances
- Load increase possible by load shifting from noncritical time intervals
- Dishwashers, washing machines and dryers considered here as flexible appliances

Quantifying Market Effects – Modelling of Shifted Load Curves

Quantifying Market Effects – Approaches to Price Modelling

Deman Supply

Price Modelling 2500 2000 Price (€/MWh) 1200 500 Spot Market Bid Curves Energy System Model -500 Simulation of the whole Adjustment of real 15 market data energy system **Lice (€/WWh**) 20 15 Linear optimization Market clearing price • model of the energy calculated via intersection of bid system Calculating of market curves 25 prices based on Inserting new bids or • deleting existing bids marginal costs of represents additional power plants Adjusted load curve or removed supply or as input yields new demand New intersection prices

yields new price

Quantifying Market Effects – Adjustment of Bid Curves

Modelled Prices – Base Case for Both Approaches

Results • Mean price differs considerably

• Substantial differences regarding standard deviation and price spreads

Conclusions

• Varying mean prices may be caused by different reference years

- Differences in standard deviation suggest that the energy system model does not fully represent price characteristics
- Confirmed by analyses of spreads: generally too low, no scarcity prices

Modelling Approach	Model	Curves
Mean price (€/MWh)	42.39	34.20
Standard deviation (€/MWh)	8.88	17.66
Maximum daily price spread (€/MWh)	38.05	114.69
Mean daily price spread (€/MWh)	12.78	30.57
Minimum daily price spread (€/MWh)	0.00	8.13

Modelled Prices – Effects of Curtailment-Driven Load Shifting

Scenario (Energy System Model)	Base	5.4 %	10.8 %	16.2 %
Mean price (€/MWh)	42.39	42.39	42.39	42.39
Standard deviation (€/MWh)	8.88	8.88	8.88	8.88
Maximum daily price spread (€/MWh)	38.05	38.05	38.05	38.05
Mean daily price spread (€/MWh)	12.78	12.78	12.78	12.78
Minimum daily price spread (€/MWh)	0.00	0.00	0.00	0.00

Scenario (Spot Market Bid Curves)	Base	5.4 %	10.8 %	16.2 %
Mean price (€/MWh)	34.19	34.19	34.19	34.19
Standard deviation (€/MWh)	17.66	17.65	17.63	17.62
Maximum daily price spread (€/MWh)	114.69	115.55	116.41	117.35
Mean daily price spread (€/MWh)	30.57	30.44	30.35	30.28
Minimum daily price spread (€/MWh)	8.13	8.13	8.13	8.13

Results	•	No observable differences in the energy
		system modelling approach

- Mean price in bid curve modelling constant for all scenarios
- Slight smoothing effect on price characteristics
- Increased maximum price spread
- **Conclusions** Energy system model not suitable for quantifying effects of small load changes
 - Adjustment of bid curves allows plausible modelling of price changes
 - Standard deviation and mean daily spread show load shifting from high to low prices
 - Generally, effects are rather small to negligible

Summary

Motivation

- Grid congestion due to high generation from renewables is avoided by curtailment
- Load shifting as an alternative for increased integration of renewables
- Potential effects of shifted load on market prices

Methods

- Modelling of load shifting by modification of measured load profiles
- Comparison of two approaches to price modelling: energy system modelling vs. adjustment of bid curves
- Evaluation of different scenarios

Results & Conclusions

- Energy system model not suitable for modelling price effects of small load changes
- Bid curves allow plausibly quantifying price effects
- Differences compared to base case still low
- No crucial aspect in the design of variable rates

Michael Hinterstocker

Wissenschaftlicher Mitarbeiter Forschungsgesellschaft für Energiewirtschaft mbH Tel.: +49 89 158121-53 E-Mail: mhinterstocker@ffe.de Forschungsgesellschaft für Energiewirtschaft mbH Am Blütenanger 71 80995 München Tel.: +49 89 157121-0 E-Mail: info@ffe.de Internet: www.ffegmbh.de Twitter: @FfE_Muenchen

