11. Internationale Energiewirtschaftstagung (IEWT) Wien 2019

Session: Energiepolitik IV

Challenges for the European Low-Carbon Transition

A Quantitative Assessment of the Stranded Asset Problem

14.02.2019

Konstantin Löffler, Thorsten Burandt, Karlo Hainsch, Pao-Yu Oei

Technische Universität Berlin, Workgroup for Economic and Infrastructure Policy (WIP)

DIW Berlin, Department Energy Transport and Environment

Motivation

Germany as an Example:

- The power production from fossil fuels is decreasing
- Capacities of conventional power plants remain mostly stable

Already existing overcapacities of power plants in Europe pose significant questions about the future of current and planned fossil fuel-based power plants and their economic viability.

Motivation

Load factors for gas-fired power plants have been decreasing heavily over the last few years, while new capacities have been constructed

Source: Eurostat, opsd

Agenda

- 1) Introduction
- 2) Model Setup and Key Assumptions
- 3) Results

From OSeMOSYS to GENeSYS-MOD

OSeMOSYS (Open Source Energy Modeling System):

- Cost-optimizing Linear Program (LP)
- Open-source energy systems model
- Written in GMPL using a free GNU solver
- Mainly developed by KTH in Stockholm
- Available under: http://users.osemosys.org/

GENeSYS-MOD (Global Energy System Model)...

- ...offers a fully translated GAMS version of OSeMOSYS.
- ...enhances the OSeMOSYS framework with multiple additional features.
- ...is being made **publicly available** to the community with both code and data.
- For further information on GENeSYS-MOD see: Löffler et al. (2017): https://www.mdpi.com/1996-1073/10/10/1468 and Burandt et al. (2018): https://www.diw.de/sixcms/detail.php?id=diw_01.c.594278.de

Model Design & Technologies

Agenda

- 1) Introduction
- 2) Model Setup and Key Assumptions
- 3) Results

Model Setup: Key Assumptions and Disaggregation

Key Data and Constraints

- 17 regions are considered.
- The years 2020 2050 are modeled in **5-year steps**, with 2015 as a baseline.
- The model considers 16 time slices per year: four seasons, each with four daily time slices.
- Electricity demand based on the EU Reference Scenario (PRIMES, EUREF).
- Heat and transport demands (2015) based on recent literature and data.
- Demand development and fossil fuel prices are fixed and based on the IEA 450ppm scenario datasets (World Energy Outlook 2016).
- Residual capacities for supply technologies are taken from Farfan and Breyer (2017).
- CO₂ storage potential taken from Oei et al. (2014).
- A carbon budget representing an achievement of the 2° C target is implemented.

Model Setup: Spatial Resolution

Model Setup: Carbon Budget

Model Setup: Scenarios

BASE: Baseline-Scenario, enforcing a carbon budget for a 2° C target

Introduces reduced foresight, RED simulating limited planning horizons of businesses and politicians

Adds political boundaries to the RED scenario, representing the efforts of incumbent actors and interest groups

Model Setup: Analyzing Stranded Assets

Introducing reduced foresight... Variation of baseline model runs: Final results 2025 results Optimize the period 2015 -Optimize the 5-year-period 2025 2030 - 2035 · 2015 capacities are taken Capacities and production · Optimize the 5-year-period Production values of all values are given as fixed as base stock, with their 2025 - 2030 previous years (2015respective lifetimes inputs 2030) are taken as fixed Capacities and production inputs values are given as fixed · Optimize the remaining inputs path, based on the 2° C target 2020 results 2030 results

 By introducing the element of reduced foresight to the model, the stranded asset problem is highlighted due to worse investment planning.

Agenda

- 1) Introduction
- 2) Model Setup and Key Assumptions
- 3) Results

Development of the Final Energy Mix Across Scenarios

Source: Own Illustration

Stranded Capacities per Scenario in 2035

Total Stranded Assets in GW

Shifts in Emissions Across Scenarios

(BASE Scenario as Reference)

Conclusion of our Model Results

- Results show that there will be massive amounts of unutilized capacities in Europe in the upcoming years.
- This is due to **declining costs of renewables** and **strict climate targets**, which drive conventional energy generation out of the market.
- Introducing **reduced foresight** to the model **further increases this problem**, leading to new construction of fossil fuel plants in the 2020s that quickly become obsolete.
- The decreasing competitiveness of conventional energy generation poses difficult challenges for investors, owners, and policy makers.
- Strong, clear signals from policy makers are needed to combat the threat of investment losses.

Thank you for your Attention!

© pixabay

Konstantin Löffler kl@wip.tu-berlin.de

Introducing GENeSYS-MOD v2.0

Major Upgrade from the first version (2016/17):

• Introducing...

10 more time slices

More detailed regional disaggregation

Various new technologies

Performance optimization

...and more

Temporal Disaggregation

N: Night; M: Morning; P: Peak; A: Afternoon

Model Formulation – Objective Function

Sets:

y Year f Fuel s Storage t Technology m Mode of Operation e Emission r Region l Time Slice

Objective Function

$$\min costs = \sum_{y} \sum_{t} \sum_{r} TotalDiscountedCost_{y,t,r} + \sum_{y} \sum_{r} TotalDiscountedTradeCosts_{y,r}$$

 $TotalDiscountedCost_{y,t,r} = DiscountedOperatingCost_{y,t,r}$

+ $Discounted Capital Investment_{y,t,r}$

+ $Discounted Capital Investment Storage_{y,s,r}$

+ $Discounted Technology Emissions Penalty_{y,t,r}$

- DiscountedSalvageValue $_{y,t,r}$

 $\forall y \in Y, t \in T, r \in R$

Model Equations

Capacity Adequacy

```
\sum_{m} RateOfActivity_{l,m,r,t,y} = TotalCapacityAnnual_{r,t,y} * CapacityFactor_{l,r,t,y} * AvailabilityFactor_{r,t,y} * CapacityToActivityUnit_{r,t} \forall y \in Y, r \in R, l \in L, t \in T
```

```
RateOfProductionByTechnologyByMode_{f,l,m,r,t,y} = RateOfActivity_{l,m,r,t,y} \\ * OuputActivityRatio_{f,m,r,t,y} \\ \forall \ f \in F, l \in L, m \in M \\ \forall \ r \in R, t \in T, y \in Y
```

Model Equations – Investment and Trade Costs

Investment Function

$$Total Capacity Annual_{r,t,y} = Residual Capacity_{r,t,y} \\ + \sum_{yy} New Capacity_{r,t,yy} \\ \forall \quad r \in R, t \in T, y \in Y$$

 $yy = \{y \in Y : yy > OperationalLife_{r,t} - y \land yy \ge y\} \ \forall \ r \in R, t \in T$

Trade Costs

$$\sum_{f} \sum_{rr \in R} Import_{f,l,r,rr,y} * TradeRoute_{f,r,rr,y} * TradeCosts_{f,r,rr} = TotalTradeCosts_{l,r,y} \\ \forall \ l \in L, r \in R, y \in Y$$

Selected References

- Cleveland, C.J., Morris, C. (Hrsg.) (2013a): Handbook of energy. Vol. 1: Diagrams, charts, and tables; Amsterdam: Elsevier.
- Delucchi, M.A., Jacobson, M.Z., Bauer, Z.A.F., Goodman, S., Chapman, W. (2016): 100% wind, water, and solar roadmaps.
- EIA (2012): Combined heat and power technology fills an important energy niche Today in Energy U.S. Energy Information Administration (EIA); Washington, D.C., USA, last accessed 30.07.2016 at http://www.eia.gov/todayinenergy/detail.cfm?id=8250.
- EIA (2016b): International Energy Outlook 2016 With Projections to 2040; Energy Outlook, Washington, D.C., USA, last accessed 16.07.2016 at www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf.
- Fraunhofer ISE (2015): Current and Future Cost of Photovoltaics. Long-term Scenarios for Market Development, System Prices and LCOE of Utility-Scale PV Systems.

Selected References

- Hohmeyer, O.H., Bohm, S. (2015): Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies: Trends toward 100% renewable electricity supply in Germany and Europe; in: Wiley Interdisciplinary Reviews: Energy and Environment, Vol. 4, No. 1, pp. 74–97.
- Howells, M., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., Roehrl, A. (2011): OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development; in: Energy Policy, Sustainability of biofuels, Vol. 39, No. 10, pp. 5850–5870.
- IEA (2009): Transport, Energy and CO2; Moving Towards Sustainability, Paris, France, last accessed 03.10.2016 at Transport, Energy and CO2.
- IPCC (2014a): Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; New York, NY: Cambridge University Press.

Development of Power Generation

Regional Power Generation Profiles 2015 to 2025

Unused Capacities

Scenario Comparison

- Up to 6 GW (per region) of additional unused power plants are constructed under reduced foresight.
- The amount of renewables in the electricity mix stays about the same under reduced foresight, but is lightly shifted towards coal & lignite. This is due to cost reasons and limited awareness for emission reduction targets.
- The reduced foresight scenario induces a cost increase of about 2.5 % in total system costs.

Load Factor for Installed Capacities (Gas & Coal) per Region

