Analysis and Evaluation of Hydrogen Infrastructures for Private and Commercial Vehicles

15.02.2019 | <u>SIMONAS CERNIAUSKAS</u>, THOMAS GRUBE, MARTIN ROBINIUS, DETLEF STOLTEN

IEWT 2019: 11. INTERNATIONAL ENERGY INDUSTRY CONFERENCE, "FREEDOM, EQUALITY, DEMOCRACY: BLESSINGS OR CHAOS FOR ENERGY MARKETS?" Technische Universität Wien, Gußhausstraße 27-29, 1040 Wien

IEK-3: Institute of Electrochemical Process Engineering

Member of the Helmholtz Association

Outline

- Process and Systems Analysis Group
- Motivation
- Methodology: Modeling of regional hydrogen demand
- Results of infrastructure cost analysis:
 - What are the impacts of different market segments?
 - What is the impact of market growth?
- Summary and Conclusion

Research Topics within the Process and Systems Analysis Group

IEK-3: Institute of Electrochemical Process Engineering

Motivation

- Hydrogen demand potential assessment for various hydrogen applications in Germany
- Highest demand potential during the introduction phase:
 - Non-electrified regional trains
 - Local busses
 - Forklifts of class 1 to 3
 - Heavy and light duty vehicles

Vehicles that require:

- high utilization
- fast fueling
- Iong range
- high power capacity

Regional train: non-electrified lines only, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle,

Chemical industry: Ammonia, Methanol, Petrochemical industry

IEK-3: Institute of Electrochemical Process Engineering

Methodology: Modeling of Regional Hydrogen Demand

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

Methodology

Member of the Helmholtz Association

IEK-3: Institute of Electrochemical Process Engineering

6

Forschungszentrum

Methodology: Criteria for Hydrogen Demand Distribution at the County Level

Local bus	Regional train	Passenger car	LDV/HDV	MHV
Population	Diesel train lines	Population	Loaded road freight mass	Logistic space
Federal support	Federal support	Population density	Unloaded road freight mass	Freight intensity
Income	Fuel stations	Income	Fleet size	
		Fleet size		

HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3)

Member of the Helmholtz Association

ion IEK-3: Institute of Electrochemical Process Engineering

Methodology: Criteria for Hydrogen Demand Distribution at the HRS Level

	Bus HRS	Train HRS	Public HRS: 700 bar	Non-Public HRS: 700 bar	Public HRS: 350 bar	Non-Public HRS: 350 bar	MHV HRS
Max.	402	170	9800	7148	8000	2345	10000
Meriloa	Linearly based on demand	Linearly among existing stations	Minimize investment	Based on commercial area	Minimize investment	Based on the commercial area	Based on the logistic area
e oizes	Predictable demand	Predictable demand	S, M, L, XL, XXL*	Predictable demand	S, M, L, XL, XXL*	Predictable demand	Predictable demand
carry pnas	Mean fleet for regional adoption: 25	Mean fleet for regional adoption: 5	Only S until 10 % of FS**	Mean fleet for regional adoption: 50	Only S until 10 % of FS**	Mean fleet for regional adoption: 20	Mean fleet for regional adoption: 70

* S-size: 212 kg/d, M-size: 420 kg/d, L: 1000 kg/d, XL: 1500 kg/d, XXL: 3000 kg/d

** Widely adopted view in the literature regarding the percentage of existing fuel stations for AFVs to reach sufficient infrastructure coverage: 5 - 20% [1-4]

HRS: Hydrogen Refueling Station, MHV: Material Handling Vehicle (Forklift Class 1-3), FS: Fuel Station, AFV: Alternative Fuel Vehicle

Member of the Helmholtz Association

IEK-3: Institute of Electrochemical Process Engineering

Methodology: Hydrogen Supply Chain Analysis

[1] Reuss, M., Grube, T., Robinius, M., Preuster, P., Wasserscheid, P., & Stolten, D. (2017). Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. *Applied Energy, 200*, 290-302. doi:10.1016/j.apenergy.2017.05.050

Member of the Helmholtz Association

IEK-3: Institute of Electrochemical Process Engineering

Methodology: Supply Chain Development – Example LH₂

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

What are the impacts on different market segments?

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

Effect of Public & Non-Public Fueling Infrastructure: the Case for HDV/LDV

HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, HRS: Hydrogen Refueling Station *Excluding value-added tax

Market Choice: Idealized Mix of Demand Sectors

- Assumptions for introduction phase: LCOE = 6 ct/kWh, CAPEX_{PEM} = 1500 €/kW, η_{LHV, 2018} = 67%, Storage = 60 days
- Approach:
 - Introduction phase: up to 400 kt p.a.
 - Each technology can be considered either with a demand of 0 or 50 kt p.a.
 - Evaluate all 2⁸ combinations
 - Calculate the gap to the conventional system for a given market combination

Choice of demand market has a significant impact on system cost

13

Fuel	pre-Tax	after-Tax*
Gasoline	8 ct/kWh	15,2 ct/kWh
		[1]

Dem- and p.a.	Bus fleet	Train fleet	Public Car	Non- Public Car	Public LDV, HDV	Non- Public LDV, HDV	MHV
50 kt	21%	63%	3%	6%	10%	9%	20%

[1] Taxing Energy Use. 2018, Organisation for Economic Co-operation and Development (OECD).

* Including energy related taxes (mineral oil tax), excluding value-added tax

Member of the Helmholtz Association

IEK-3: Institute of Electrochemical Process Engineering

Market Choice: Single Markets in the Introduction Phase (50 kt p.a.)

- Assumptions for introduction phase: LCOE = 6 ct/kWh, CAPEX_{PEM}= 1500 €/kW, η_{LHV, 2018}= 67%, Storage = 60 days
- Assumption: commercial fleets with access to commercial HRS¹ do not fuel in public HRS
- Public HRS introduction strategy requires significantly higher upfront investment per vehicle
- Transportation sectors with predictable demand and MHV enable the cost gap to conventional fuels to be significantly reduced

Forschungszentrum

¹28% of passenger cars and 56% HDV/LDV [1]

*Including energy related taxes (mineral oil tax), excluding value-added tax HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3) HRS: Hydrogen Refueling Station HSC: Hydrogen Supply Chain, HSC: Hydrogen Supply Chain Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

What is the impact of market growth?

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

Market Penetration Scenarios

- Scenario data base for key technologies and application fields in the introductory phase
- Formulation of exploratory scenarios to analyze how hydrogen infrastructure costs might develop
- Formulation of high, medium and low diffusion scenarios for each hydrogen application depending on level of:
 - political support
 - economic incentives
 - technological progress
 - technology acceptance
 - willingness to pay for emission-free applications

Regional train: non-electrified lines only, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3), Chemical industry: Ammonia, Methanol, Petrochemical industry Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering 16

JULICH Forschungszentrum

Scenario and Input Parameters

			Medium hvdrogen demand scenario			
Assumption	Value	Unit	3000 Local bus			
WACC	8	%	हि – Regional train			
LCOE	6	ct/kWh	∑			
Natural gas cost	4	ct/kWh				
Imported H ₂ cost	11.7 [1]	ct/kWh	b 1000			
Storage time	60 [2,3]	days	Ĩ			
Max. electrolytic H ₂ production	3160 [2]	kt/a	0 2025 2030 2035 2040 2045 2050			
Electrolysis efficiency (2050)	70	%	Time (Years)			
Electrolysis investment (2023)	1500 [4]	€/kW	 Dominating technology: 2023 - 2030: LDVs & HDVs, 			
Electrolysis learning rate	20 [5]	%				
Max. SMR H ₂ production	96* [6]	kt/a	After 2030: Passenger cars			
SMR efficiency	80 [7]	%	chemical industry			
Fuel station learning rate	6 [8]	%	* 5 % of todays industrial			

hydrogen output

Regional train: non-electrified lines only, HDV: Heavy Duty Vehicle, LDV: Light Duty Vehicle, MHV: Material Handling Vehicle (Forklift Class 1-3), Chemical industry: Ammonia, Methanol, Petrochemical industry IEK-3: Institute of Electrochemical Process Engineering Member of the Helmholtz Association

Infrastructure Cost Development: Medium Scenario

Hydrogen is cost-competitive with conventional fuels (after-tax) by 2024-2029

* Benchmark =
$$\left(\text{gasoline cost}\left(8\frac{ct}{kwh}\right) + \text{mineral oil tax}\left(7,2\frac{ct}{kwh}\right)\right) * \eta_{\text{Fuel Cell}}/\eta_{ICE}$$

**Excluding value-added tax

Member of the Helmholtz Association

IEK-3: Institute of Electrochemical Process Engineering

18

Forschungszentrum

Summary and Conclusion

Member of the Helmholtz Association IEK-3: Institute of Electrochemical Process Engineering

Summary and Conclusion

- High demand potential during the introduction phase for hydrogen applications with requirements for high utilization, fast fueling, long range and high power capacity:
 - Regional non-electrified trains
 - Local busses
 - Forklifts of the class 1 to 3
 - Heavy and light duty vehicles
- Focus on non-public fueling infrastructure significantly reduces the upfront costs of fuel stations and distribution
- > Choice of demand market segment has a significant impact on the system cost
- Hydrogen is cost-competitive with conventional fuels (after-tax) by 2024-2029

Cost-competitive hydrogen infrastructures can be developed within 5-10 years of investment

Thank you for your attention!

