

Einbindung von Solarthermie in den intermittierenden, temperaturflexiblen Betrieb von Nahwärmenetzen

11. Internationale Energiewirtschaftstagung TU Wien, 13. Februar 2019

Andreas Hammer, Chr. Sejkora, Th. Kienberger, Lehrstuhl für Energieverbundtechnik, Montanuniverität Leoben

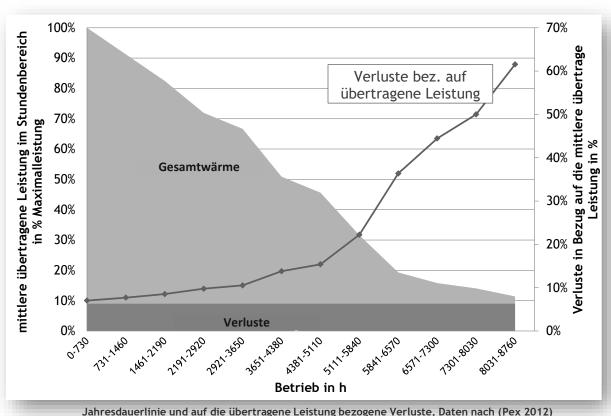
zemetam ran zmengre rendamateethiin, memanamateethiat zeede

J. Jungwirth, Lehrstuhl für Wirtschafts- und Betriebswiss., MUL,

H. Striessnig, H. Kaufmann, nahwaerme.at

DEPARTMENT FÜR

Umwelt- & Energieverfahrenstechnik

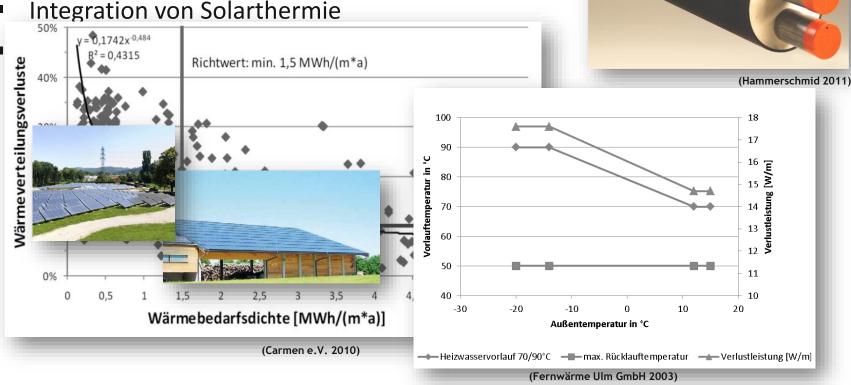


Einleitung

Netzverluste bei kommunalen Nahwärmenetzen

→ im Schwachlastbereich besonders ausgeprägt

Jahresdauerlinie und auf die übertragene Leistung bezogene Verluste. Daten nach (Pex 2012)



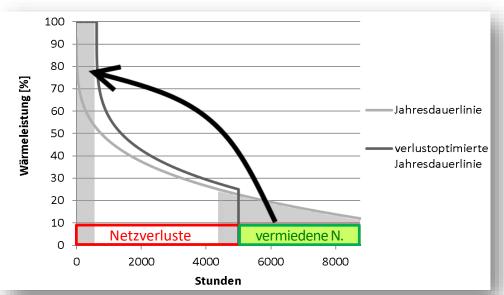
Einleitung

Verringerung der Verluste durch folgende Maßnahmen

- Erhöhung der Wärmebedarfsdichten
- Verbesserte Wärmeverteilsysteme
- Verbesserte Netzregelung

Einleitung

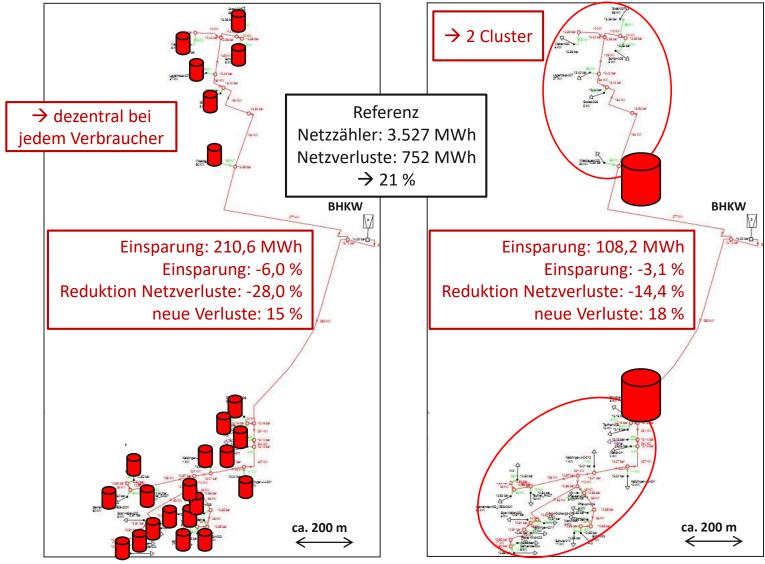
Projektidee von TFlex


Senkung der Netzverluste ohne komplexen Eingriff in die Netzstrukturen selbst:

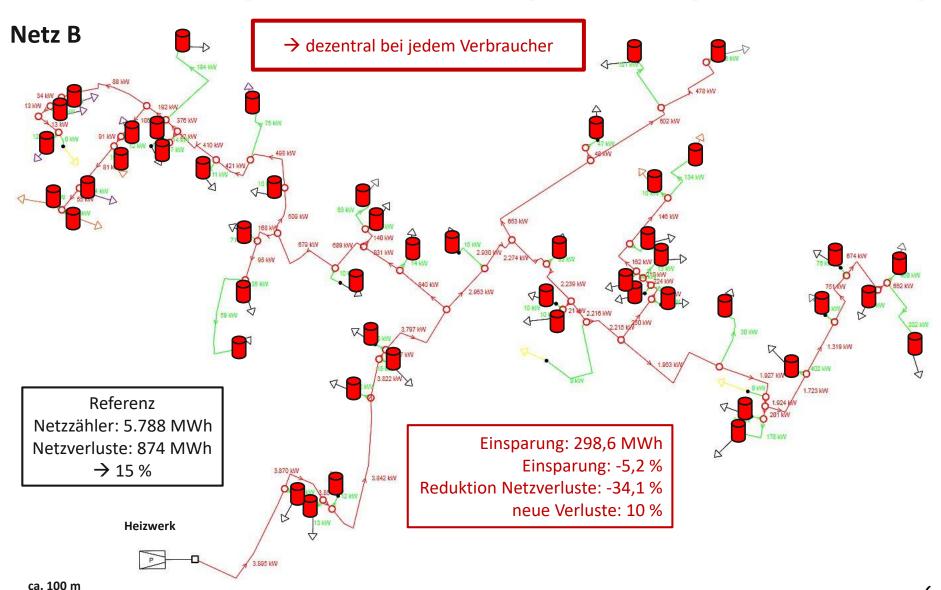
Einsatz von dezentralen Wärmespeichern

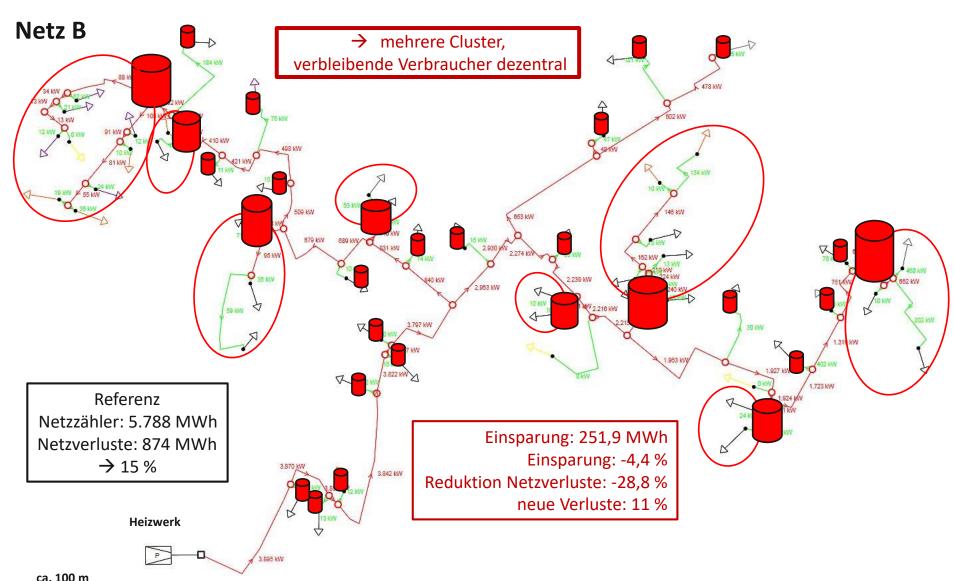
Werden mit Netz-Volllast geladen

Schwachlastbedarf wird daraus gedeckt


- Netz wird dazwischen abgeschaltet
- Bei gleicher übertragener
 Wärmemenge verringert sich die verlustbehaftete Betriebszeit

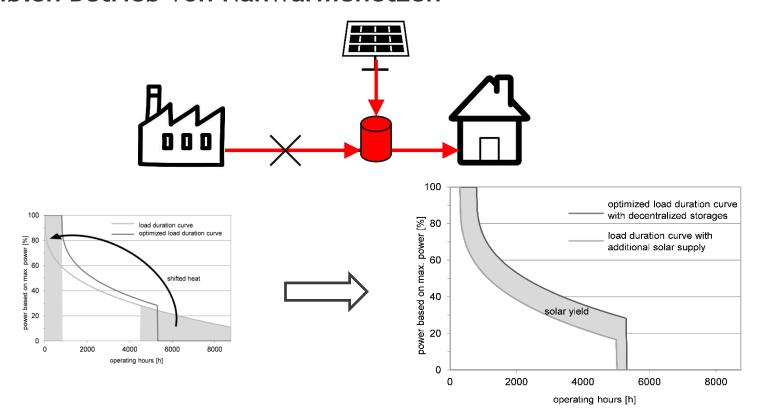
Einleitung: Szenarien für Speicherimplementierung


Netz A


Einleitung: Szenarien für Speicherimplementierung

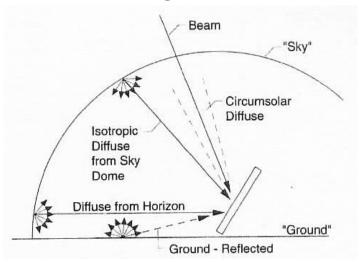
EVT

Einleitung: Szenarien für Speicherimplementierung



Projektidee und Aufgabenstellung

Einbindung von Solarthermie in den intermittierenden, temperaturflexiblen Betrieb von Nahwärmenetzen


- Wieviel Energie kann dadurch eingespart werden?
- Wie wirkt sich das wirtschaftlich aus?

Methodik

Berechnung des solaren Eintrages mit dem Modell von Perez

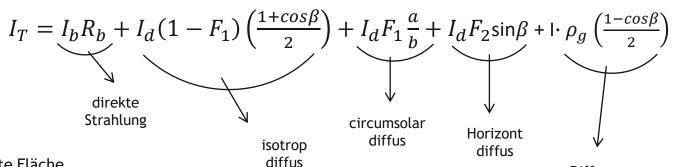
Notwendige Eingabeparameter:

I: gemessene Strahlung auf horizontalen Fläche

Ф: Breitengrad

B: Neigung des Solarkollektors

y: Azimutwinkel



Diffuse

Reflexion

Boden

(Duffie, Beckmann, 2006)

Größen in der Formel:

I_T: Einstrahlung auf eine geneigte Fläche

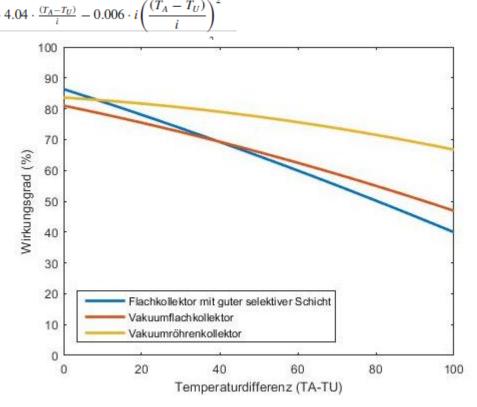
I_b: Direkter Strahl

R_h: Verhältnis a/b (I_T geneigte Fläche/I)

I_d: Diffuse Einstrahlung

 F_1 , F_2 : Brightness Koeffizient (aus B, Parameter Δ und Tabellen mit $f_{x,y}$)

 ρ_g : Diffuse Reflexion (z.B. 0,6)

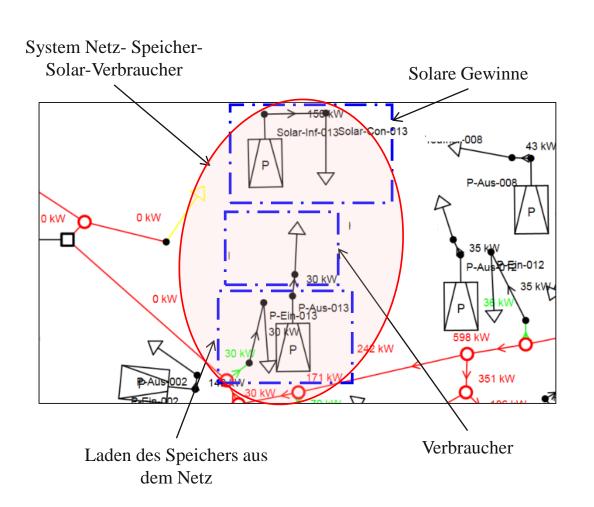


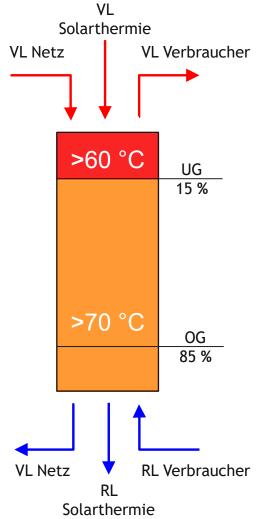
Methodik

Berechnung der Effizienz der Kollektoren mittels Kollektorkennlinien

Kurve Nr.	Kollektortyp	Wirkungsgradbeziehung η nach Gl. (3.9)				
1	Kissenabsorber	$\eta = 0.91 - 12 \cdot \frac{(T_A - T_U)}{i}$				
2	Flachkollektor mit guter selektiver Schicht	$\eta = 0.8634 - 4.$	$04 \cdot \frac{(T_A - T_U)}{i} - 0.006 \cdot i \left(\frac{(T_A - T_U)}{i}\right)$			
3	Vakuumröhren	$\eta = 0.836 - 0.00$	100			
4	Vakuumflachkollektor	$\eta = 0.8099 -$	90			
5	Vakuumflachkollektor mit seitli- cher und rückwärtiger Isolierung	$\eta = 0.7901 -$	70			
6	Flachkollektor mit Glas-Folien-Abdeckung	$\eta = 0.7851 -$	6) 60 ·			
		$\eta = 0.7831 -$	0%) 60 - 60 - 60 - 60 - 60 - 60 - 60 - 60			

(Stieglitz, Heinzel, 2012)

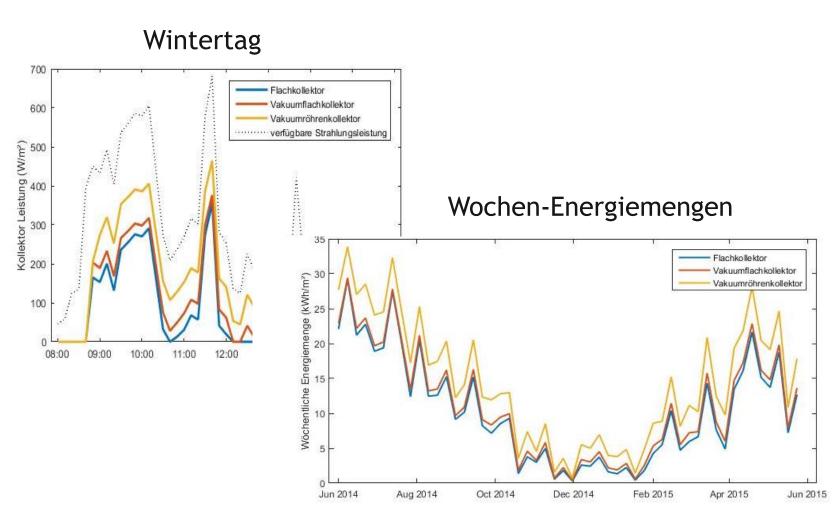




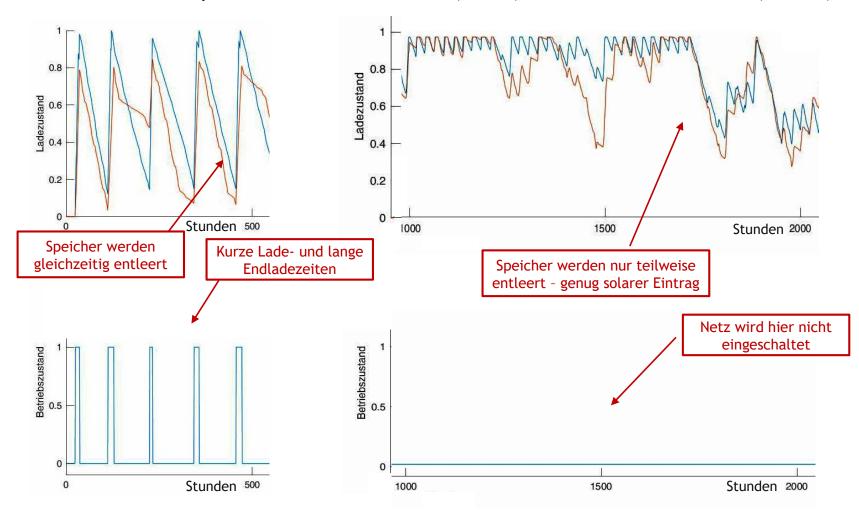
Methodik

Integration der Solarthermie in PSS Sincal und Speichermanagement über das "Plug Flow Model"

EVT Methodik


Methoden der wirtschaftlichen Begleitung

- Betrachtete Systemkonzepte:
 - S0: Referenzszenario mit Realkosten
 - S1: Speicherszenario mit dezentralen Speichern bei jedem Abnehmer
 - S2: Speicherszenario mit Clusterspeichern
 - S3: Integration Solarthermie (geeignete Dachflächen) in Szenario S1
 - S4: Integration Solarthermie (geeignete Dachflächen) in Szenario S2
 - S5: Integration Solarthermie (30 % der Dachflächen) in Szenario S2
- Annahme der Neuinvestition
- Dynamische Investitionsrechnung basierend auf Kapitalwertmethode
- Kalkulatorischer Zinssatz von 4 % bei Betrachtungszeitraum von 25 Jahren
- Sensitivitätsanalyse (Wärmeabnahme, Brennstoff- und Wärmekosten etc.)
- Risikoanalyse mittels Monte-Carlo Simulation


Beispielhafter Leistungsverlauf für verschiedene Kollektoren für Netz A

Netz A, 2 Cluster Speicher: Ladezustände (oben) und Betriebszustand (unten)

Sommer, ohne solare Einspeisung

Sommer, mit solarer Einspeisung, 30 % Fläche

Energetische Betrachtung

Speicherkonfiguration		"Dezentral + solar"			"Cluster + solar"			
Netz	Vergleich Netzzähler S0 [MWh]	Vergleich Projektteil ohne Solar S1 [%]	Einspeisung + Solar S3 [MWh]	Summe Einsparung mit Solar S3 [%]	Vergleich Projektteil ohne Solar S2 [%]	Einspeisung + Solar S4/S5 [MWh]	Summe Einsparung mit Solar S4/S5 [%]	
А	3.527,5	-5,3	2.192,0	-37,9	-3,1	1.794,3	-49,1	
A / S5 30 % Solarflächen	3.527,5				-3,1	2.512,6	-28,8	
В	5.788,2	-5,2	3.381,3	-41,6	-4,4	3.379,6	-41,6	
B / S5 30 % Solarflächen	5.788,2				-4,4	4.052,6	-30,0	

Wirtschaftliche Betrachtung

Kosteneffizienz	Szenario	S0	S1	S2	S3	S4	S 5
Amortisationszeit	a	21	26	22	>>25	>>25	59
Wärmegestehungskosten	€/MWh	61	65	62	124	121	81
Eingesparte Biomasse- Brennstoffkosten	€/a	2.659	6.353	4.977	150.176	151.940	106.242
Ökoeffizienz							
Ressourcenschonung Biomasse	t/a	26	68	53	1.399	1.415	990

- Sensitivitätsanalyse
 - Größter Einfluss: Wärmeabnahme, vor Solar- und Speicherinvestitionen
- Risikoanalyse
 - Größter Einfluss: Wärmepreisindex vor Biomassepreisindex

Zusammenfassung und Fazit

- Energieeinsparung von 29 % bis 49 % möglich
- Im Sommer sehr lange Ausschaltzeiten bis Abschaltung des Netzes möglich
- Wirtschaftlich darstellbar nur Szenario mit Clusterspeichern (S2)
- Miet- und Grundstückskosten für Speicher und ST wurden ausgeklammert
- Keine Untersuchung der rechtlichen Situation bezüglich Aufstellungsort für die Speicher
- Grundsätzlich zu untersuchen ist die Wechselbeanspruchung des Netzes aufgrund der häufigeren Temperaturänderungen

Vielen Dank für Ihre Aufmerksamkeit!

Die Autoren bedanken sich bei der Österreichischen Forschungsförderungsgesellschaft mbH (FFG) (Programm "Stadt der Zukunft") für die Förderung und bei der Zentralanstalt für Meteorologie und Geodynamik (ZAMG) für die Zurverfügungstellung der Temperatur- und Einstrahldaten.

