

TECHNISCHE UNIVERSITÄT WIEN

Freiheit, Gleichheit, Demokratie: Segen oder Chaos für Energiemärkte?

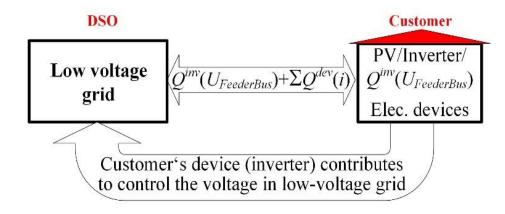
11. Internationale Energiewirtschaftstagung an der TU Wien

> 13. – 15. Februar 2019 Wien, Österreich Tagungsort: Campus Gußhaus / TU Wien Gußhausstraße 25-29 1040 Wien

Veranstalter: Energy Economics Group - Institut für Energiesysteme und Elektrische Antriebe der TU Wien AAEE (Austrian Association for Energy Economics)

A new Volt / var local control strategy in low-voltage grids in the context of the *LINK*-based holistic architecture

Daniel-Leon Schultis, Albana Ilo


IEWT 2019, Vienna, Austria, Feb. 13-15, 2019

- The distributed generation (DG) causes violations of the upper voltage limit in low-voltage grids (LVG).
- Local Volt/var control of DG-inverters (e.g. Q(U)-control) is actually in discussion to eliminate the voltage limit violations.

Actual solution

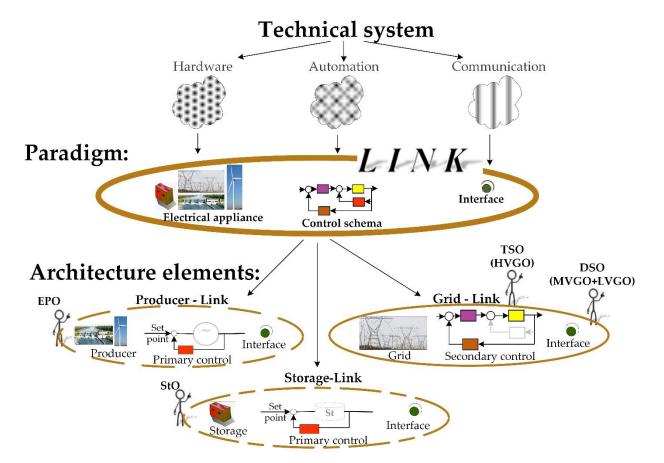
In LVGs customers' plants are close to each other, and almost homogeneously connected. In this case, the customers' smart inverters are used to support the grid operation.

• The actual solutions intertwine the operation of LVGs and DG-inverters, although they are property of different players.

- Distributed and inverter-based local Volt/var controls lead to high and uncontrolled reactive power exchanges with the superordinate grid, making their coordination necessary.
- The coordination of customer-owned DG-inverters for LVG voltage control provokes new social and technical problems.

Technical problems:

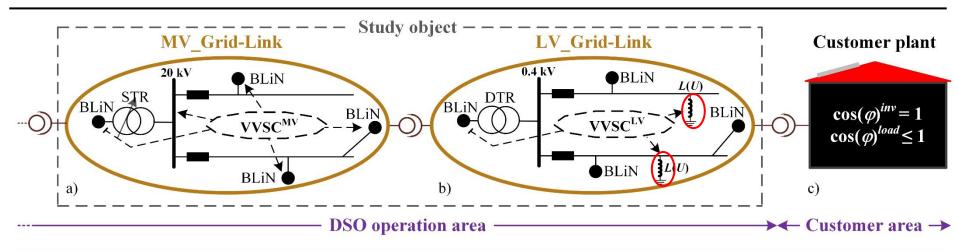
- ICT challenge / cyber security
- Complex Volt/var management in LVGs
- High *Q*-flows in all voltage levels


Social problems:

- Data privacy
- Discrimination
- Cost allocation

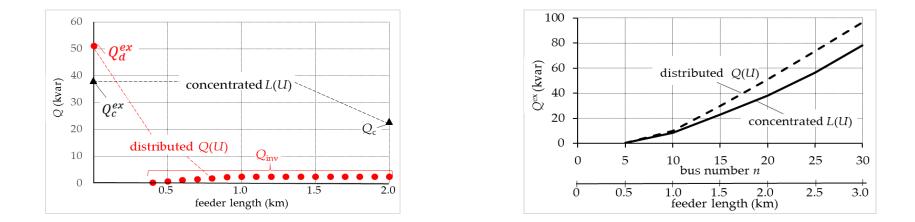
LINK-Paradigm

To solve the actual social and technical issues, the *LINK*-Paradigm and the resulting *LINK*-based holistic architecture are used.


Source: A. Ilo, Link- the Smart Grid Paradigm for a Secure Decentralized Operation Architecture, EPSR, vol. 131, 2016, pp. 116-125.

Source: A. Ilo et al., Robust technical/functional operation architecture for smart power systems, CIRED Workshop 2018, Ljubljana, Slovenia.

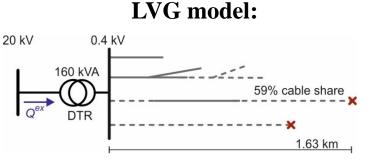
- VVSC^{xx} calculates var set-points for the adjacent Grid-Links and voltage set-points for internal transformers and reactive devices, while respecting static and dynamic constraints.
- Customer plants are considered as black boxes.


LINK-Solution stipulates that each Grid-Link operator should primarily use his own reactive devices for voltage control.

It is proposed to install DSO-owned inductive devices equipped with local L(U)-control for voltage control in LVGs.

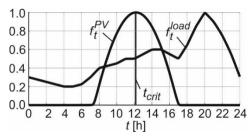
Analytical investigations and numerical simulations in theoretical and real low voltage grids have shown that:

- To reach the same voltage value at the feeder end, distributed Q(U)-controls need to absorb more reactive power in total than the concentrated L(U)-control.
- The difference in reactive power absorption increases with an increasing feeder length.

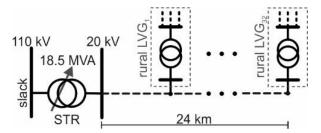

The concentrated L(U)-control is more effective than the distributed Q(U)-control.

Source: A. Ilo, D.-L. Schultis, et al., Effectiveness of Distributed vs. Concentrated Volt/Var Local Control Strategies in Low-Voltage Grids, Appl. Sci. 2018, 8(8), 1382.

Daniel-Leon Schultis, Albana Ilo



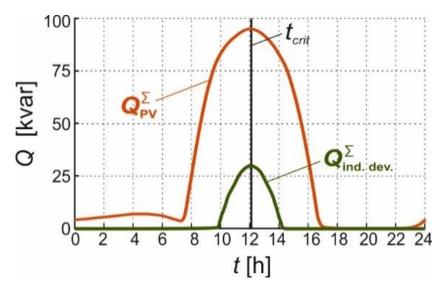
The daily behavior of a real rural LVG and a theoretical MVG is simulated in presence of no-, <u>local</u> Q(U)- and <u>local</u> L(U)-control.


- 61 connected (residential) customer plants
- Each customer plant includes a ZIP-load and a (5 kWp) PV-system
- Fixed Q(U)-characteristic and L(U) voltage set-point

load and PV profile:

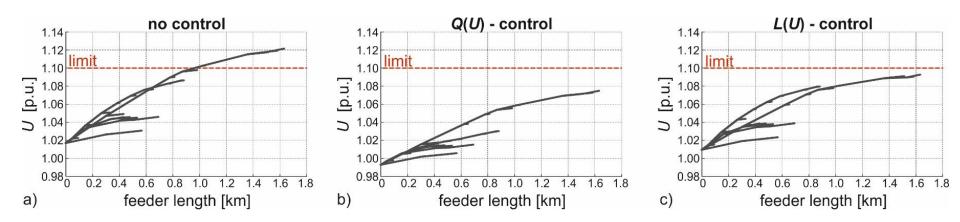
- Sampled into one minute time-steps
- → 1440 load flows per control strategy

MVG model:


• 32 equidistantly connected rural LVGs

LVG losses, DTR loading, and Q-exchange

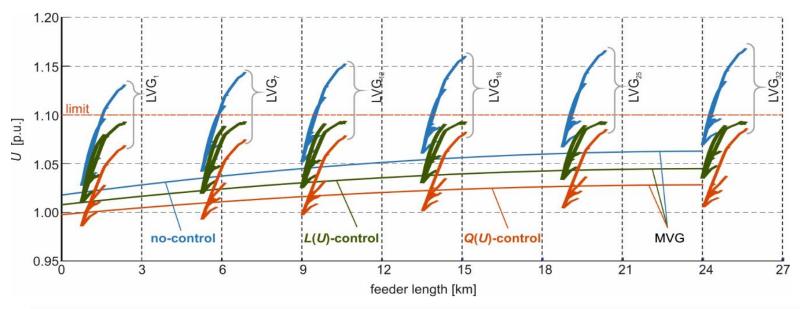
Q-consumption of control devices:



Q(U)-controlled PV-inverters absorb more reactive power in total than L(U)controlled inductive devices, leading to:

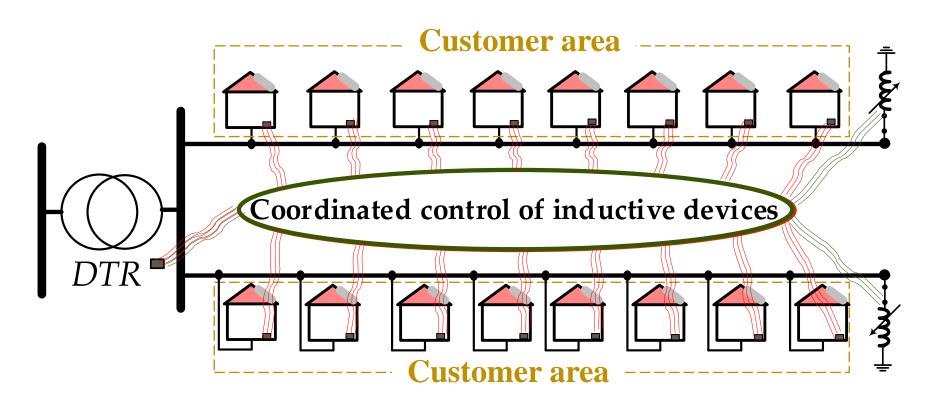
- High grid losses
- High DTR loading
- High *Q*-exchange

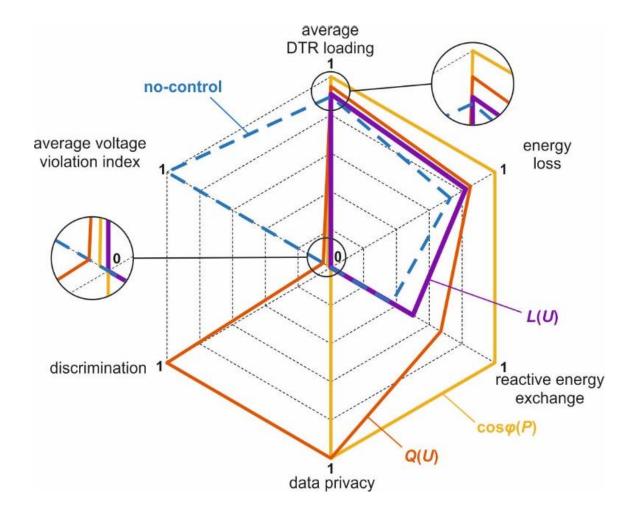
LVG voltage profiles at t_{crit}



No-control \rightarrow violations of the upper voltage limit appear.

Q(U)-control	\rightarrow eliminates limit violations.
	\rightarrow decreases LVG voltages more than necessary.
L(U)-control	 → eliminates limit violations. → decreases LVG voltages as required.


MVG & LVG voltage profiles at t_{crit}


- No-control \rightarrow violations of the upper voltage limit appear in all LVGs.
- Q(U)-control \rightarrow eliminates limit violations.
 - \rightarrow decreases MVG and LVG voltages more than necessary.
 - \rightarrow provokes relative <u>large voltage drops</u> in DTRs.
- L(U)-control \rightarrow eliminates limit violations. \rightarrow decreases MVG and LVG voltages <u>as required</u>. \rightarrow provokes relative <u>small voltage drops</u> in DTRs

Overall performance evaluation of reactive power control strategies in low-voltage grids

Source: D.-L. Schultis, A. Ilo, et al., Overall performance evaluation of reactive power control strategies in low voltage grids with high prosumer share, EPSR. 2019, vol. 168, pp. 336-349.

The proposed local L(U)-control strategy shows substantial benefits compared to the local Q(U)-control of PV-inverters:

Social benefits:

- Cancels out the need for customers to invest in Volt / var control equipment.
- Discrimination of customers is impossible in principle.
- Data privacy is guaranteed.

Technical/economical benefits:

- All violations of the upper voltage limit are eliminated.
- MVG voltages are less suppressed.
- ICT challenge / threat to cyber attacks is reduced. \rightarrow cost reduction
- Volt / var management tasks in LVGs are simplified. \rightarrow cost reduction
- Grid losses, DTR loading and Q-exchange are reduced. \rightarrow cost reduction

Additional expenditures:

• Installation and operation of local L(U)-controls

 \rightarrow cost increase

TECHNISCHE UNIVERSITÄT WIEN

Freiheit, Gleichheit, Demokratie: Segen oder Chaos für Energiemärkte?

11. Internationale Energiewirtschaftstagung an der TU Wien

> 13. – 15. Februar 2019 Wien, Österreich Tagungsort: Campus Gußhaus/TU Wien Gußhausstraße 25-29

1040 Wien

Veranstaltor: Energie Sconomics Group - Institut für Energiesysteme und Elektrische Antriebe der TU Wien AAEE (Austrian Association for Energy Economics)

Thank you for your attention

Daniel-Leon Schultis, Albana Ilo