
D. Putz; 2018 1

Comparison of different optimization approaches on

short-term dispatch of a thermal power plant unit

Dominik Putz

Technische Universität Wien, Energy Economics group
Vienna, Austria
dominik_putz@hotmail.com

Abstract: The expansion of renewable energy sources
increases the volatility of energy generation. Of
fundamental importance for security of supply is the
balance between demand and generation at all times.
The thermal power plant units which are used for this
purpose are subject to restrictions that must be observed
to ensure smooth and accident-free operation. The
energy supply companies use software solutions
developed for this purpose to generate optimal
timetables for the electric power plant blocks for the
electrical retrieval services. The focus of these
applications is optimization. Due to increasing demands

and complexity of the models, it is a growing challenge
for software development to guarantee optimal
timetables. The aim of this research is to explore the
differences between two solving approaches namely
Mixed-Integer Linear Programming and Backward
Dynamic Programming. The focus of the analysis will be
on the duration of the optimization, the storage
requirements and the operability.

Keywords: Optimization, Portfoliomanagement, Power
dispatch, Unit Commitment Model, Mixed Integer Linear
Programming, Dynamic Programming,

1 Introduction

The progressive liberalization of the energy markets does

not only yield new possibilities and chances. It also raises new

risks. The long-term planning of business activities has

become difficult due to volatile market prices for fuel

procurement and electricity sales. Moreover, with the

increasing development of renewable energy production the

uncertainty in the generation from water, wind and solar

resources rises continuously.

In energy supply, it is important that demand equals

production. Since the demand for energy is basically fixed and

generally predictable, production must be a variable. In the

process, regenerative energy generators are treated

preferentially and the production of thermal power plants is

purposefully reduced in the event of a possible generation

surplus. The thermal power plants are subject to technical

constraints that must be met to ensure smooth and accident-

free operation. From this situation, at certain times and

environmental influences, the control and regulation of

thermal power plants is a major challenge for the generation

companies.

Portfolio optimization has the task of ensuring the optimal

use of power plants for the respective market situation. The

generation companies use developed and adapted software

solutions with a focus on optimization. Due to the increasing

demands and complexity, it is a growing challenge for

software development to offer optimal solutions.

Section 2 describes MILP and DP in general. Section 3

explains the power plant to be optimized with the parameters

to be met. It mentions Unit Commitment Model on which the

optimization is based. Section 4 explains the realization and

modeling of the two approaches in detail. The results are then

summarized in Section 5 and a conclusion in Section 6 is

made.

2 State of the Art

2.1 Mixed-Integer Linear Programming (MILP)

The determination of an optimal roadmap for the electrical

demand performance of one or more power plant blocks is

based on mixed-integer linear programming. As standard in

the energy industry, a 7-day forecast is made in a 15-minute

D. Putz; 2018 2

time grid using mixed-integer linear programming. Depending

on the data situation, the calculation can take seconds to

several hours. This aspect should be considered in all further

investigations. Often simplifications and linearization are

made to make the processing faster. Long calculation times

arise for periods of more than 28 days or better time

granularity of 15 minutes for example.

2.2 Backward Dynamic Programming (DP)

A power plant deployment park with many different

generators that have large volatilities often results in relatively

long computation times. Therefore, this leads to an alternative

solution method. The method of dynamic programming has

been studied closely, as this represents a promising solution

method. This method has generally been known for a long

time.

Dynamic programming can be implemented in several

ways. The ever-increasing level of complexity of the models

to be solved raises the question of whether alternative

programming languages are more suitable for implementing

dynamic programming. Julia is chosen as the language to

study because of her great potential in terms of performance in

solving optimization problems compared to other

programming languages [1] [2].

3 Model Description

This section is devoted to the description of the developed

model. This includes general properties that describe the

model and which framework conditions or restrictions it must

fulfill. The mathematical description is limited to basic

definitions only.

3.1 Thermal Power Plant Unit

The thermal power plant unit to be modeled is a gas and

steam combined cycle power plant (CCGT) Due to its

technical nature, a combined cycle power plant can be used

very flexibly and can be excellently used to cover both

medium and peak load [3]. The plant block is a so-called price

taker, so its operating condition does not affect the price of

electricity unlike that of a market maker, which is of

fundamental importance as the market price can be considered

independent. The data for the electricity price will be sourced

from the Austrian energy exchange EXAA (Energy Exchange

Austria), which is a marketplace for energy trading.

3.2 Unit Commitment Model

It is clear from the above-described aspects that the control

of thermal power plants must be very flexible at certain times

and that this must be carried out by corresponding software

applications to ensure an optimal timetable. Due to the lack of

storage capacity or technology, production must always be

equal to consumption. One model that has proven itself as a

description is the so-called unit commitment model. The Unit

Commitment Model is used to calculate power plant on-

demand performance, especially in the day-ahead schedule. It

is used by generation companies and has the task of creating

efficient schedules for fossil and renewable power plants

under various technical and economic constraints. The focus

of the unit commitment model is to minimize the costs of

production or to maximize the output of production [4],

subject to special restrictions.

The framework conditions to which the unit commitment

model is subject include large, complex problems caused by

different types of power plants, a high number of energy

producers and geographical factors based on existing network

infrastructure. Certainly, every unit has different technical and

commercial qualities which further increase the complexity of

the problem. In addition, the unit commitment model includes

other elements, such as forecast uncertainties specific to wind

energy and photovoltaics, reserves that need to be available,

and policy drivers, such as the EU ETS (European Union

Emissions Trading System), which determine the duration of

the optimization. From this it can be deduced that the solution

of the unit commitment model can take a relatively long time.

For generation companies it is important that the optimization

takes up as little time as is necessary. To minimize the duration

of the optimization, simplifications are made in the model,

which significantly reduce the complexity.

3.3 Technical and economical Parameters

The time step interval corresponds to a resolution of

15 minutes. The selected fine granularity results in a relatively

high number of steps, which corresponds to 672 steps per week

and 35 040 steps per year. The large number of time steps

increases the complexity of the problem, which has a direct

impact on the calculation time.

The technical restrictions for the power plant unit can be

taken from Table 1.

Table 1 Technical restrictions of the power plant unit.

Parameter Dimension Value

power max MW 420

power min MW 250

min. down time h 4

min. run time h 6

max. power jump between two steps MW/15min 45

coefficient of production a MW th. 194,4

coefficient of production b MW th./MW 1,027

coefficient of production c MW th./MW² 0,000782

down time for hot start h 4

down time for warm start h 12

down time for cold start h 48

D. Putz; 2018 3

The installed net power must be regarded as variable for

each time step. In standard mode, this standard has the given

value. For certain situations during operation, it may be

necessary to set the maximum technically allowed power

lower than the installed net power. This is to be considered in

the model at best. The minimum downtime describes the time

interval that must be met after the power plant block is shut

down before it can be restarted. Likewise, the minimum

operating time determines that time interval that the power

plant block must comply after reaching the minimum technical

capacity before it may be shut down again. The maximum

power change gradient specifies the maximum allowable

power jump between two consecutive time intervals. The

maximum power change gradient must be adhered to under all

circumstances.

The efficiency of the power plant block is not constant and

depends on the electrical demand performance. Figure 1 shows

that the relationship between electrical demand performance

and thermal fuel thermal power is approximately linear.

Figure 1 Thermal Power and efficiency in relation to electrical

power.

By linear approximation [5], the quadratic inverse

production function can thus be simplified to a linear function

as seen in Eq. (1).

𝑃𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑐ℎ = 𝑎 + 𝑏 ∙ 𝑃 + 𝑐 ∙ 𝑃2 ≅ 𝑎𝑙𝑖𝑛 ∙ 𝑏𝑙𝑖𝑛 ∙ 𝑃 (1)

The data source for the electricity price for 2017 will be the

values from the EXAA 15-minute product. These are averaged

for each hour to reduce volatility within an hour. Additional

economic parameters can be seen in Table 2.

Table 2 Economic parameters.

Parameter Dimension Value

CO2 emission factor t/MWh th. 0,2

cost for hot start EUR 30000

cost for warm start EUR 40000

cost for cold start EUR 50000

operation costs EUR/h 200

market price EUR/MWh variabel

fuel price EUR/MWh variabel

CO2 price EUR/t variabel

additional costs EUR/MWh variabel

The cost function which is showed in Eq. (2) consists of

fuel costs, operation and maintenance costs, additional costs

and start up costs.

𝐶𝑡 = 𝑝𝑓𝑢𝑒𝑙,𝑡 ∙ 𝑃𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑐ℎ,𝑡 + 𝑝𝑂&𝑀,𝑡 + 𝑝𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙,𝑡 ∙ 𝑃

+ 𝐶𝑆𝑡𝑎𝑟𝑡,𝑡

(2)

A power plant must be powered up from a standstill with a

predetermined ramp to get online or to reach the minimum

technical capacity which is shown in Figure 2. Once the

starting process of the power plant has been completed, the

power may be varied within the technically permissible limits

over the maximum power change gradient.

Figure 2 Ramping progress of different starting and shutdown

types.

3.4 Objective Function

The goal of the model is to maximize the yield of Eq. (3).

The yield corresponds to the sum of the contribution margin at

each time step. The contribution margin consists of the

difference between the profit from the electricity marketing,

the purchase of fuel and other costs.

Π = ∑ 𝑝𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 ∙ 𝑃𝑡 − 𝐶𝑡

𝑇

𝑡=1

(3)

4 Methodology

The following section is dedicated to the analytical method

for implementing the software application.

4.1 Mixed Integer Linear Programming (MILP)

Mixed-integer linear optimization is a practical modeling

solution for problems for which there are no explicit

algorithms. Basically, it consists of an objective function to be

optimized and a set number of equations and inequalities that

limit the mathematical problem. The solution must satisfy all

D. Putz; 2018 4

equations and inequalities to exist as a valid solution,

otherwise the objective function cannot be optimized or there

is only a trivial zero solution. Strictly speaking, the variable to

be optimized is the so-called decision variable, the solution

space is the multiplicity of permissible solutions, and the

objective function assigns a value to each solution. The

solution of mixed-integer linear problems is usually carried

out in practice by so-called solvers, such as GUROBI [6],

XPRESS or CPLEX. Undoubtedly, identifying an optimal

solution is often a difficult task and takes a significant amount

of time, depending on size and complexity.

In the realization of the model with MatLab the solver

GUROBI is used. It uses a combination of branch-and-bound,

presolving, cut-plane methods, heuristics and. As an objective,

GUROBI understands the objective function, which must be

minimized. The constraints, called constraints, must be

followed by the model. The shape of the Mixed Integer

Programming Problem can be determined by the standard

form using Eq. (4) - Eq. (6).

min
𝑥1,𝑥2,…

𝑓(𝑥1, 𝑥2, …) (4)

𝑔𝑖(𝑥1, 𝑥2, …) ≤ 𝑏𝑖 𝑖 = 1, … , 𝑝 (5)

ℎ𝑗(𝑥1, 𝑥2, …) = 0 𝑗 = 1, … , 𝑞 (6)

The calculation is performed on an Intel Core i5-4690K (4

CPUs, 3.50 GHz), Windows 10 Enterprise 64-bit and 8 GB

memory.

Maximizing the yield as a target function is given by

Eq. (7).

Π = max
𝑃𝑛

∑ [∑(𝑝𝑘 ∙ 𝑃𝑛,𝑘 ∙ ∆𝑇)

𝐾

𝑘=1

𝑁

𝑛=1

− [𝑝𝑛,𝑘,𝑓𝑢𝑒𝑙

∙ (𝑎𝑛 ∙ 𝑢𝑛,𝑘 + 𝑏𝑛 ∙ 𝑃𝑛,𝑘 + 𝑐𝑛 ∙ 𝑃𝑛,𝑘
2)

+ 𝑝𝑛,𝑚𝑖𝑠𝑐 ∙ 𝑃𝑛,𝑘 + (𝑝𝑛,𝑂&𝑀 ∙ 𝑢𝑛,𝑘)]

∙ ∆𝑇

− (𝐶𝑛,𝑐𝑜𝑙𝑑
𝑆𝑈 ∙ 𝑧𝑛,𝑘,𝑐𝑜𝑙𝑑 + 𝐶𝑛,𝑤𝑎𝑟𝑚

𝑆𝑈

∙ 𝑧𝑛,𝑘,𝑤𝑎𝑟𝑚 + 𝐶𝑛,ℎ𝑜𝑧
𝑆𝑈 ∙ 𝑧𝑛,𝑘,ℎ𝑜𝑡)]

(7)

Table 3 contains the description of the symbols used and

decision variables of the objective function.

Table 3 Variable description for the objective function.

Symbol Dimension Description

𝑛 p.u. unit 𝑛 … 𝑁

𝑘 p.u. time step 𝑘 … 𝐾

𝑝𝑘 EUR/MWh market price

𝑃𝑛,𝑘 MW scheduled power

𝑇 h time grid

𝑝𝑛,𝑘,𝑓𝑢𝑒𝑙 EUR /MWh fuel price

𝑝𝑛,𝑚𝑖𝑠𝑐 EUR/h miscellaneous costs

𝑝𝑛,𝑂&𝑀 EUR/MWh operation costs

𝑢𝑛,𝑘 1 on/off status

𝑧𝑛,𝑘,… 1 type of start (hot/warm/cold)

𝐶𝑛,…
𝑆𝑈 EUR starting costs

The objective function consists of the profit generated by

marketing the electricity price less the loss caused by the

purchase of fuel, start-up costs, operating costs and additional

costs.

4.2 Backward Dynamic Programming (DP)

Dynamic programming can be used to solve optimization

problems when this problem can be broken down into

subproblems [7]. The so-called optimality principle of

Bellman [8] describes the connection that the optimal solution

of the problem consists of the optimal solutions of the sub-

problems. The sum of the local optima corresponds to the

global optimum. The sub-problems are easier to solve or

optimize and can thus be used as the optimal solution to the

overall problem. Furthermore, once calculated solutions of

sub-problems are stored and for similar sub-problems, the

previously calculated intermediate solution is used instead of

being recalculated. This method, on which the model is based,

is called memoization. This has a direct effect on the

calculation time of the optimization. Dynamic programming

uses a bottom-up solution strategy. Thanks to the many partial

solutions, you can get to the solution of the overall problem

faster because they are easier and faster to solve. The CPU is

relieved thereby. On the other hand, the main memory is

loaded more, because in return the partial solutions must be

stored. In the implemented model in Julia, which uses

backward dynamic programming, the memory is relieved by

an extension of the algorithm. The reason for this is that not

every part problem is stored. Once small part problems have

been resolved into a larger part problem, only the result of the

larger part problem is saved, as shown in Figure 3. The

previously calculated results are discarded because their

information is redundant. As a result, the memory required for

larger problems is reduced enormously.

Figure 3 Solving approach of dynamic programming.

D. Putz; 2018 5

In principle, the basic process can be broken down into

four steps:

1. Characterization of the structure of an optimal

solution

2. Recursive definition of the value of an optimal

solution

3. Calculation of the value of an optimal solution

(recursive)

4. Construction of the optimal solution of calculated

information.

The simulation runs on a system with Intel Core i5-6500

(4 CPUs, 3.20 GHz), Windows 10 Enterprise 64-bit, and

16 GB of memory.

Backward dynamic programming describes the direction

in which the optimization problem first goes through. It is

started at time 𝑇 and iterates "backwards" until time 𝑇0. After

reaching the starting point 𝑇0, the sub-problems are resolved

to "forward" until the time 𝑇 is reached. Mathematically, this

approach can be explained by Eq. (8).

Π(𝑇) = max[𝑔(𝑡) + Π(𝑇 − 𝑡)] 𝑡 = 1, … , 𝑇 (8)

In principle, one can think of the solution method as a

directed graph from the network theory. Each node has a

certain number of neighbors. There is a so-called adjacency

list for each node. The adjacency list contains the information

for the transition from a temporally following node. A

transition may be allowed or not allowed. It is thus spanned a

node array in which only certain transitions are allowed.

Figure 4 illustrates the structure and operation of the directed

graph.

Figure 4 The directed graph: All nodes correspond to a

particular state. Allowed and not allowed transitions are calculated.

The time axis lies in horizontal level and the states are referred to the

vertical axis.

The goal of backward dynamic programming is to find one

or more solution paths with the optimal solution. It is clear that

the number of possible paths increases rapidly with increasing

time steps. Due to a high number of allowed neighbors from

one node, there are many possible paths. From this one can

conclude that the number of possible transitions from one node

to the next is to be kept as small as possible in order to keep

the calculation time low.

An extension can reduce the number of paths. The reverse

dynamic programming is extended by a modified priority list

known from integer-mixed linear programming. In general,

this extension can be understood in such a way that, when

determining the adjacency list at runtime, it is also possible to

determine directly which transitions are most-likely. This

results in priorities which transitions are most likely to lead to

the optimal solution path. The big advantage is that many

transitions that are possible, but not optimal, are calculated

only when all previous possible transitions do not provide a

clear solution. The introduced modified priority list

significantly shortens the calculation time of the optimization,

since many paths that are suboptimal are not calculated.

The algorithm works through the following steps:

1. At the beginning of the program, all relevant data is

read. The data are suitably prepared for further

processing.

2. The recursive function GetOptimalSolution(...)

determines the optimal solution path based on reverse

dynamic programming.

3. GetPathStates(...) ¨ checks whether the solution path

found provides a permissible and permitted solution

and whether the roadmap can actually be

implemented in reality.

4. GetPowerDispatch(...) provides the relevant roadmap

for the power plant block based on the solution path.

5. GetPathProfit(...) provides the optimal profit.

Figure 5 illustrates the schematic flow of the program.

Figure 5 Schematic flow of the application.

D. Putz; 2018 6

5 Results

The following chapter presents the results of the previously

described solution methods. The focus is on the calculated

optimal schedules, which are obtained as a. Another essential

factor is the assessment of performance. Attention is paid to

the relationship between the number of steps and the duration

of the calculation.

Figure 6 shows the timetable with the relevant boundary

data.

Figure 6 Power schedule as solution of the optimization.

5.1 Mixed Integer Linear Programming (MILP) –
Calculation time

The calculation time for optimization by the mixed-integer

linear method can vary widely. A major influence on the

calculation period is the so-called maximum permitted relative

gap. The gap describes the percentage difference between the

upper and lower bounds of optimization due to the branch-and-

bound approximation method. Since it is an approximation

method, the result is closer to the actual optimum, the smaller

the relative gap. As a rule, a relative gap of 0.1 % is used. For

comparison purposes and to keep the calculation time low, the

relative gap is set at 2 %. This results in the calculation periods

for the respective number of steps shown in Table 4.

Table 4 Calculation duration of the optimization by using MILP.

Time interval steps duration in sec.

1 day 96 4,666

1 week 672 43,932

2 weeks 1 344 254,4

3 weeks 2 016 257

1 month 2 688 350

5 weeks 3 360 557

6 weeks 4 032 988

7 weeks 4 704 1 027

2 months 5 376 1 122

3 months 8 064 2 581

Figure 7 shows the relationship between the number of

steps and the duration of the calculation. The trend line

illustrates the non-linear relationship, which is a well-known

fact in mixed-integer linear programming.

Figure 7 Non-linear relationship between number of steps and

calculation duration by using MILP.

5.2 Backward Dynamic Programming (DP) –
Calculation time and main memory

The calculation duration of the model with backward

dynamic programming always behaves linearly depending on

the number of steps. The data situation has no influence on the

calculation time of the optimization problem. Furthermore,

there is no duality gap, as is the case in mixed-integer linear

programming. Table 5 shows all important results of backward

dynamic programming.

Table 5 Calculation duration of the optimization by using DP.

Time interval steps duration memory

 in sec. in MB

1 day 96 0,18 13

1 week 672 0,25 27

2 weeks 1 344 0,29 45

3 weeks 2 016 0,30 49

1 month 2 688 0,35 61

5 weeks 3 360 0,40 83

6 weeks 4 032 0,44 101

7 weeks 4 704 0,48 118

2 months 5 376 0,59 160

3 months 8 064 0,86 284

4 months 10 752 1,14 422

6 months 16 128 1,67 664

8 months 21 504 2,15 850

9 months 24 192 2,33 953

1 year 35 040 3,72 1 515

D. Putz; 2018 7

Dynamic programming has a linear relationship between

computation time and number of steps. Figure 8 illustrates this

behavior.

Figure 8 Linear relationship between number of steps and

calculation duration by using DP.

Another aspect of interest in studying the results is the

amount of memory needed for optimization. There are no

measurement results for the mixed-integer linear

programming. Figure 9 shows the linear relationship between

memory requirements and number of steps for backward

dynamic programming.

Figure 9 Linear relationship between number of steps and

memory needed by using DP.

5.3 Deductions

There is no doubt that backward dynamic programming

has a significant advantage in computation time over mixed-

integer linear programming. Especially with increasing

number of steps, the time difference is significantly greater. In

addition, the calculation time for mixed-integer linear

programming scales disproportionately with increasing

number of steps. As a result, the size of the problem must be

kept small or the granularity of time as large as possible.

Table 6 summarizes the measured calculation durations.

Table 6 Comparison of MILP and DP in terms of calculation

duration.

Time interval steps MILP DP

 in seconds

1 day 96 4,67 0,18

1 week 672 43,93 0,25

2 weeks 1 344 254,4 0,29

1 month 2 688 350 0,35

3 months 8 064 2 581 0,86

1 year 35 040 n.v. 3,72

The data situation has a significant influence on the

duration of the calculation. During this work, it was observed

that, depending on the market price, the calculation period can

vary considerably. In times of extreme market situations,

caused for example by very low or very high market prices,

the model can be solved relatively quickly. The reason is that

it is clear for the algorithm that the optimal schedule dictates

either standstill or maximum technical performance. In times

when the market price is in the range of marginal costs, the

optimization takes more time to decide which power step

would be the best.

6 Conclusio

In this chapter a final statement of the work is made and

subsequently dealt with topics that are of interest in the further

course of the research, but which could not be discussed in the

context of the research.

The developed application always tries to calculate the best

schedule. However, due to various influences, it may happen

that the predetermined power value cannot be driven. The only

information that is classified as relevant for a ramp process for

optimization, for example, is the previously-initiated

downtime. The algorithm has no detailed information about

the current availability of the power plant block.

As the work has shown, prefer a recursive solution using

backward dynamic programming. In the work, it has been

proven that when calculating schedules for longer periods of

finer time granularity, backward dynamic programming of

mixed-integer linear programming is clearly superior. On the

other hand, however, it must be considered that the

development of a model that uses the dynamic programming

method turns out to be much more complex than a model that

works with a solver. The big advantage of using a solver like

GUROBI lies in the simplicity of the model implementation.

The decision of which solution method to use depends on the

type of application and the problem. In the case of the present

problem, a dynamic method with a minimum computation

time is to be preferred, since the optimization is called very

frequently. In addition, their result is time-critical, since it is

used for decisions in the real market and it is important that an

optimization process has the shortest possible calculation time.

As the results have shown, the linearization of the quadratic

inverse production function brings a relatively large time

saving. The reason for this lies in the reduction of the quadratic

optimization problem to a linear one. GUROBI can solve a

D. Putz; 2018 8

quadratic problem. For an exact solution, a quadratic

formulation would be necessary. Here it should be asked

whether such a mathematically more elaborate formulation

provides far better results in terms of accuracy, although the

circumstance of the calculation duration plays a role.

Although the limitations on the start and end points have

very little effect on the result, they are further simplifications

that adversely affect the accuracy of the result.

One question that could not be resolved by this research is

the inclusion of storage. Storages often come in resource

planning, which were not included in the course of this work.

It is undisputed that the implementation of memory increases

the level of complexity even further. Thus, the integration of

memories is a worthwhile task for future investigations.

When developing the algorithm, special cases were

detected that could provide further performance enhancements

through intelligent enhancements. For example, the priority

list that estimates the optimal predecessor could still be

optimized. It would be fundamentally possible to estimate not

just the next predecessor, but several, based on one step, so

that complete path elements can be processed faster. In a

market situation of very high or very low market prices, the

preferred electrical retrieval performance would already be

known and thus several time steps could be skipped. Another

interesting aspect is the introduction of neural networks. For

certain sections of the program, substitution by neural

networks would be fundamental. To be able to answer this

question unambiguously, further investigations are needed.

7 References

[1] S. B. Aruoba and J. Fernandez-Villaverde, “sas,”

[Online]. Available: https://www.sas.upenn.edu/

jesusfv/comparison languages.pdf. [Accessed 22

November 2018].

[2] “Julia The Programming Language,” [Online].

Available: https://julialang.org. [Accessed 22 November

2018].

[3] G. W., Energieversorgung, TU Wien, 2015.

[4] D. Putz and M. Gumhalter, “Different approaches on

power-based Unit Commitment formulation,” Wien,

2018.

[5] W. E., “Taylor Series,” [Online]. Available:

http://mathworld.wolfram.com/TaylorSeries.html/.

[Accessed 13 Dezember 2018].

[6] GUROBI, “GUROBI,” [Online]. Available:

http://www.gurobi.com/resources/gettingstarted/mipbasi

cs. [Accessed 13 Dezember 2018].

[7] A. Martin, “Effiziente Algorithmen,” [Online].

Available:

https://www.tuilmenau.de/fileadmin/public/iti/Lehre/Eff

.Alg/SS12/EA-SS12-Kapitel5.pdf/. [Accessed 3 Oktober

2018].

[8]

..

A. H., “Energiemodelle und Analysen - Lineare

Optimierung,” 2017.

