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Abstract: The expansion of renewable energy sources 
increases the volatility of energy generation. Of 
fundamental importance for security of supply is the 
balance between demand and generation at all times. 
The thermal power plant units which are used for this 
purpose are subject to restrictions that must be observed 
to ensure smooth and accident-free operation. The 
energy supply companies use software solutions 
developed for this purpose to generate optimal 
timetables for the electric power plant blocks for the 
electrical retrieval services. The focus of these 
applications is optimization. Due to increasing demands 

and complexity of the models, it is a growing challenge 
for software development to guarantee optimal 
timetables. The aim of this research is to explore the 
differences between two solving approaches namely 
Mixed-Integer Linear Programming and Backward 
Dynamic Programming. The focus of the analysis will be 
on the duration of the optimization, the storage 
requirements and the operability. 

Keywords: Optimization, Portfoliomanagement, Power 
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1 Introduction 

The progressive liberalization of the energy markets does 

not only yield new possibilities and chances. It also raises new 

risks. The long-term planning of business activities has 

become difficult due to volatile market prices for fuel 

procurement and electricity sales. Moreover, with the 

increasing development of renewable energy production the 

uncertainty in the generation from water, wind and solar 

resources rises continuously. 

In energy supply, it is important that demand equals 

production. Since the demand for energy is basically fixed and 

generally predictable, production must be a variable. In the 

process, regenerative energy generators are treated 

preferentially and the production of thermal power plants is 

purposefully reduced in the event of a possible generation 

surplus. The thermal power plants are subject to technical 

constraints that must be met to ensure smooth and accident-

free operation. From this situation, at certain times and 

environmental influences, the control and regulation of 

thermal power plants is a major challenge for the generation 

companies. 

Portfolio optimization has the task of ensuring the optimal 

use of power plants for the respective market situation. The 

generation companies use developed and adapted software 

solutions with a focus on optimization. Due to the increasing 

demands and complexity, it is a growing challenge for 

software development to offer optimal solutions. 

Section 2 describes MILP and DP in general. Section 3 

explains the power plant to be optimized with the parameters 

to be met. It mentions Unit Commitment Model on which the 

optimization is based. Section 4 explains the realization and 

modeling of the two approaches in detail. The results are then 

summarized in Section 5 and a conclusion in Section 6 is 

made. 

2 State of the Art 

2.1 Mixed-Integer Linear Programming (MILP) 

The determination of an optimal roadmap for the electrical 

demand performance of one or more power plant blocks is 

based on mixed-integer linear programming. As standard in 

the energy industry, a 7-day forecast is made in a 15-minute 
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time grid using mixed-integer linear programming. Depending 

on the data situation, the calculation can take seconds to 

several hours. This aspect should be considered in all further 

investigations. Often simplifications and linearization are 

made to make the processing faster. Long calculation times 

arise for periods of more than 28 days or better time 

granularity of 15 minutes for example. 

2.2 Backward Dynamic Programming (DP) 

A power plant deployment park with many different 

generators that have large volatilities often results in relatively 

long computation times. Therefore, this leads to an alternative 

solution method. The method of dynamic programming has 

been studied closely, as this represents a promising solution 

method. This method has generally been known for a long 

time. 

Dynamic programming can be implemented in several 

ways. The ever-increasing level of complexity of the models 

to be solved raises the question of whether alternative 

programming languages are more suitable for implementing 

dynamic programming. Julia is chosen as the language to 

study because of her great potential in terms of performance in 

solving optimization problems compared to other 

programming languages [1] [2]. 

3 Model Description 

This section is devoted to the description of the developed 

model. This includes general properties that describe the 

model and which framework conditions or restrictions it must 

fulfill. The mathematical description is limited to basic 

definitions only. 

3.1 Thermal Power Plant Unit 

The thermal power plant unit to be modeled is a gas and 

steam combined cycle power plant (CCGT) Due to its 

technical nature, a combined cycle power plant can be used 

very flexibly and can be excellently used to cover both 

medium and peak load [3]. The plant block is a so-called price 

taker, so its operating condition does not affect the price of 

electricity unlike that of a market maker, which is of 

fundamental importance as the market price can be considered 

independent. The data for the electricity price will be sourced 

from the Austrian energy exchange EXAA (Energy Exchange 

Austria), which is a marketplace for energy trading. 

3.2 Unit Commitment Model 

It is clear from the above-described aspects that the control 

of thermal power plants must be very flexible at certain times 

and that this must be carried out by corresponding software 

applications to ensure an optimal timetable. Due to the lack of 

storage capacity or technology, production must always be 

equal to consumption. One model that has proven itself as a 

description is the so-called unit commitment model. The Unit 

Commitment Model is used to calculate power plant on-

demand performance, especially in the day-ahead schedule. It 

is used by generation companies and has the task of creating 

efficient schedules for fossil and renewable power plants 

under various technical and economic constraints. The focus 

of the unit commitment model is to minimize the costs of 

production or to maximize the output of production [4], 

subject to special restrictions. 

The framework conditions to which the unit commitment 

model is subject include large, complex problems caused by 

different types of power plants, a high number of energy 

producers and geographical factors based on existing network 

infrastructure. Certainly, every unit has different technical and 

commercial qualities which further increase the complexity of 

the problem. In addition, the unit commitment model includes 

other elements, such as forecast uncertainties specific to wind 

energy and photovoltaics, reserves that need to be available, 

and policy drivers, such as the EU ETS (European Union 

Emissions Trading System), which determine the duration of 

the optimization. From this it can be deduced that the solution 

of the unit commitment model can take a relatively long time. 

For generation companies it is important that the optimization 

takes up as little time as is necessary. To minimize the duration 

of the optimization, simplifications are made in the model, 

which significantly reduce the complexity. 

3.3 Technical and economical Parameters 

The time step interval corresponds to a resolution of 

15 minutes. The selected fine granularity results in a relatively 

high number of steps, which corresponds to 672 steps per week 

and 35 040 steps per year. The large number of time steps 

increases the complexity of the problem, which has a direct 

impact on the calculation time. 

The technical restrictions for the power plant unit can be 

taken from Table 1. 

Table 1 Technical restrictions of the power plant unit. 

Parameter Dimension Value 

power max MW 420 

power min MW 250 

min. down time h 4 

min. run time h 6 

max. power jump between two steps MW/15min 45 

coefficient of production a MW th. 194,4 

coefficient of production b MW th./MW 1,027 

coefficient of production c MW th./MW² 0,000782 

down time for hot start h 4 

down time for warm start h 12 

down time for cold start h 48 
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The installed net power must be regarded as variable for 

each time step. In standard mode, this standard has the given 

value. For certain situations during operation, it may be 

necessary to set the maximum technically allowed power 

lower than the installed net power. This is to be considered in 

the model at best. The minimum downtime describes the time 

interval that must be met after the power plant block is shut 

down before it can be restarted. Likewise, the minimum 

operating time determines that time interval that the power 

plant block must comply after reaching the minimum technical 

capacity before it may be shut down again. The maximum 

power change gradient specifies the maximum allowable 

power jump between two consecutive time intervals. The 

maximum power change gradient must be adhered to under all 

circumstances. 

The efficiency of the power plant block is not constant and 

depends on the electrical demand performance. Figure 1 shows 

that the relationship between electrical demand performance 

and thermal fuel thermal power is approximately linear. 

 

Figure 1 Thermal Power and efficiency in relation to electrical 

power. 

By linear approximation [5], the quadratic inverse 

production function can thus be simplified to a linear function 

as seen in Eq. (1). 

𝑃𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑐ℎ = 𝑎 + 𝑏 ∙ 𝑃 + 𝑐 ∙ 𝑃2 ≅ 𝑎𝑙𝑖𝑛 ∙ 𝑏𝑙𝑖𝑛 ∙ 𝑃 (1) 

The data source for the electricity price for 2017 will be the 

values from the EXAA 15-minute product. These are averaged 

for each hour to reduce volatility within an hour. Additional 

economic parameters can be seen in Table 2. 

Table 2 Economic parameters. 

Parameter Dimension Value 

CO2 emission factor t/MWh th. 0,2 

cost for hot start EUR 30000 

cost for warm start EUR 40000 

cost for cold start EUR 50000 

operation costs EUR/h 200 

market price EUR/MWh variabel 

fuel price EUR/MWh variabel 

CO2 price EUR/t variabel 

additional costs EUR/MWh variabel 

 

The cost function which is showed in Eq. (2) consists of 

fuel costs, operation and maintenance costs, additional costs 

and start up costs. 

𝐶𝑡 = 𝑝𝑓𝑢𝑒𝑙,𝑡 ∙ 𝑃𝑡ℎ𝑒𝑟𝑚𝑖𝑠𝑐ℎ,𝑡 + 𝑝𝑂&𝑀,𝑡 + 𝑝𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙,𝑡 ∙ 𝑃

+ 𝐶𝑆𝑡𝑎𝑟𝑡,𝑡 

(2) 

A power plant must be powered up from a standstill with a 

predetermined ramp to get online or to reach the minimum 

technical capacity which is shown in Figure 2. Once the 

starting process of the power plant has been completed, the 

power may be varied within the technically permissible limits 

over the maximum power change gradient. 

 

Figure 2 Ramping progress of different starting and shutdown 

types. 

3.4 Objective Function 

The goal of the model is to maximize the yield of Eq. (3). 

The yield corresponds to the sum of the contribution margin at 

each time step. The contribution margin consists of the 

difference between the profit from the electricity marketing, 

the purchase of fuel and other costs. 

Π = ∑ 𝑝𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 ∙ 𝑃𝑡 − 𝐶𝑡

𝑇

𝑡=1

 

(3) 

4 Methodology 

The following section is dedicated to the analytical method 

for implementing the software application. 

4.1 Mixed Integer Linear Programming (MILP) 

Mixed-integer linear optimization is a practical modeling 

solution for problems for which there are no explicit 

algorithms. Basically, it consists of an objective function to be 

optimized and a set number of equations and inequalities that 

limit the mathematical problem. The solution must satisfy all 
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equations and inequalities to exist as a valid solution, 

otherwise the objective function cannot be optimized or there 

is only a trivial zero solution. Strictly speaking, the variable to 

be optimized is the so-called decision variable, the solution 

space is the multiplicity of permissible solutions, and the 

objective function assigns a value to each solution. The 

solution of mixed-integer linear problems is usually carried 

out in practice by so-called solvers, such as GUROBI [6], 

XPRESS or CPLEX. Undoubtedly, identifying an optimal 

solution is often a difficult task and takes a significant amount 

of time, depending on size and complexity. 

In the realization of the model with MatLab the solver 

GUROBI is used. It uses a combination of branch-and-bound, 

presolving, cut-plane methods, heuristics and. As an objective, 

GUROBI understands the objective function, which must be 

minimized. The constraints, called constraints, must be 

followed by the model. The shape of the Mixed Integer 

Programming Problem can be determined by the standard 

form using Eq. (4) - Eq. (6). 

min
𝑥1,𝑥2,…

𝑓(𝑥1, 𝑥2, … ) (4) 

𝑔𝑖(𝑥1, 𝑥2, … ) ≤ 𝑏𝑖      𝑖 = 1, … , 𝑝 (5) 

ℎ𝑗(𝑥1, 𝑥2, … ) = 0     𝑗 = 1, … , 𝑞 (6) 

The calculation is performed on an Intel Core i5-4690K (4 

CPUs, 3.50 GHz), Windows 10 Enterprise 64-bit and 8 GB 

memory. 

Maximizing the yield as a target function is given by 

Eq. (7). 

Π = max
𝑃𝑛

∑ [∑(𝑝𝑘 ∙ 𝑃𝑛,𝑘 ∙ ∆𝑇)

𝐾

𝑘=1

𝑁

𝑛=1

− [𝑝𝑛,𝑘,𝑓𝑢𝑒𝑙

∙ (𝑎𝑛 ∙ 𝑢𝑛,𝑘 + 𝑏𝑛 ∙ 𝑃𝑛,𝑘 + 𝑐𝑛 ∙ 𝑃𝑛,𝑘
2 )

+ 𝑝𝑛,𝑚𝑖𝑠𝑐 ∙ 𝑃𝑛,𝑘 + (𝑝𝑛,𝑂&𝑀 ∙ 𝑢𝑛,𝑘)]

∙ ∆𝑇

− (𝐶𝑛,𝑐𝑜𝑙𝑑
𝑆𝑈 ∙ 𝑧𝑛,𝑘,𝑐𝑜𝑙𝑑 + 𝐶𝑛,𝑤𝑎𝑟𝑚

𝑆𝑈

∙ 𝑧𝑛,𝑘,𝑤𝑎𝑟𝑚 + 𝐶𝑛,ℎ𝑜𝑧
𝑆𝑈 ∙ 𝑧𝑛,𝑘,ℎ𝑜𝑡)] 

(7) 

Table 3 contains the description of the symbols used and 

decision variables of the objective function. 

Table 3 Variable description for the objective function. 

Symbol Dimension Description 

𝑛 p.u. unit 𝑛 … 𝑁 

𝑘 p.u. time step 𝑘 … 𝐾 

𝑝𝑘 EUR/MWh market price 

𝑃𝑛,𝑘 MW scheduled power 

𝑇 h time grid 

𝑝𝑛,𝑘,𝑓𝑢𝑒𝑙  EUR /MWh fuel price 

𝑝𝑛,𝑚𝑖𝑠𝑐 EUR/h miscellaneous costs 

𝑝𝑛,𝑂&𝑀 EUR/MWh operation costs 

𝑢𝑛,𝑘 1 on/off status 

𝑧𝑛,𝑘,… 1 type of start (hot/warm/cold) 

𝐶𝑛,…
𝑆𝑈  EUR starting costs 

 

The objective function consists of the profit generated by 

marketing the electricity price less the loss caused by the 

purchase of fuel, start-up costs, operating costs and additional 

costs. 

4.2 Backward Dynamic Programming (DP) 

Dynamic programming can be used to solve optimization 

problems when this problem can be broken down into 

subproblems [7]. The so-called optimality principle of 

Bellman [8] describes the connection that the optimal solution 

of the problem consists of the optimal solutions of the sub-

problems. The sum of the local optima corresponds to the 

global optimum. The sub-problems are easier to solve or 

optimize and can thus be used as the optimal solution to the 

overall problem. Furthermore, once calculated solutions of 

sub-problems are stored and for similar sub-problems, the 

previously calculated intermediate solution is used instead of 

being recalculated. This method, on which the model is based, 

is called memoization. This has a direct effect on the 

calculation time of the optimization. Dynamic programming 

uses a bottom-up solution strategy. Thanks to the many partial 

solutions, you can get to the solution of the overall problem 

faster because they are easier and faster to solve. The CPU is 

relieved thereby. On the other hand, the main memory is 

loaded more, because in return the partial solutions must be 

stored. In the implemented model in Julia, which uses 

backward dynamic programming, the memory is relieved by 

an extension of the algorithm. The reason for this is that not 

every part problem is stored. Once small part problems have 

been resolved into a larger part problem, only the result of the 

larger part problem is saved, as shown in Figure 3. The 

previously calculated results are discarded because their 

information is redundant. As a result, the memory required for 

larger problems is reduced enormously. 

 

Figure 3 Solving approach of dynamic programming. 
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In principle, the basic process can be broken down into 

four steps: 

1. Characterization of the structure of an optimal 

solution 

2. Recursive definition of the value of an optimal 

solution 

3. Calculation of the value of an optimal solution 

(recursive) 

4. Construction of the optimal solution of calculated 

information. 

The simulation runs on a system with Intel Core i5-6500 

(4 CPUs, 3.20 GHz), Windows 10 Enterprise 64-bit, and 

16 GB of memory. 

Backward dynamic programming describes the direction 

in which the optimization problem first goes through. It is 

started at time 𝑇 and iterates "backwards" until time 𝑇0. After 

reaching the starting point 𝑇0, the sub-problems are resolved 

to "forward" until the time 𝑇 is reached. Mathematically, this 

approach can be explained by Eq. (8). 

Π(𝑇) = max[𝑔(𝑡) + Π(𝑇 − 𝑡)]    𝑡 = 1, … , 𝑇 (8) 

In principle, one can think of the solution method as a 

directed graph from the network theory. Each node has a 

certain number of neighbors. There is a so-called adjacency 

list for each node. The adjacency list contains the information 

for the transition from a temporally following node. A 

transition may be allowed or not allowed. It is thus spanned a 

node array in which only certain transitions are allowed. 

Figure 4 illustrates the structure and operation of the directed 

graph. 

 

Figure 4 The directed graph: All nodes correspond to a 

particular state. Allowed and not allowed transitions are calculated. 

The time axis lies in horizontal level and the states are referred to the 

vertical axis. 

The goal of backward dynamic programming is to find one 

or more solution paths with the optimal solution. It is clear that 

the number of possible paths increases rapidly with increasing 

time steps. Due to a high number of allowed neighbors from 

one node, there are many possible paths. From this one can 

conclude that the number of possible transitions from one node 

to the next is to be kept as small as possible in order to keep 

the calculation time low. 

An extension can reduce the number of paths. The reverse 

dynamic programming is extended by a modified priority list 

known from integer-mixed linear programming. In general, 

this extension can be understood in such a way that, when 

determining the adjacency list at runtime, it is also possible to 

determine directly which transitions are most-likely. This 

results in priorities which transitions are most likely to lead to 

the optimal solution path. The big advantage is that many 

transitions that are possible, but not optimal, are calculated 

only when all previous possible transitions do not provide a 

clear solution. The introduced modified priority list 

significantly shortens the calculation time of the optimization, 

since many paths that are suboptimal are not calculated. 

The algorithm works through the following steps: 

1. At the beginning of the program, all relevant data is 

read. The data are suitably prepared for further 

processing. 

2. The recursive function GetOptimalSolution(...) 

determines the optimal solution path based on reverse 

dynamic programming. 

3. GetPathStates(...) ¨ checks whether the solution path 

found provides a permissible and permitted solution 

and whether the roadmap can actually be 

implemented in reality. 

4. GetPowerDispatch(...) provides the relevant roadmap 

for the power plant block based on the solution path. 

5. GetPathProfit(...) provides the optimal profit. 

Figure 5 illustrates the schematic flow of the program. 

 

Figure 5 Schematic flow of the application. 
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5 Results 

The following chapter presents the results of the previously 

described solution methods. The focus is on the calculated 

optimal schedules, which are obtained as a. Another essential 

factor is the assessment of performance. Attention is paid to 

the relationship between the number of steps and the duration 

of the calculation. 

Figure 6 shows the timetable with the relevant boundary 

data. 

 

Figure 6 Power schedule as solution of the optimization. 

5.1 Mixed Integer Linear Programming (MILP) – 
Calculation time 

The calculation time for optimization by the mixed-integer 

linear method can vary widely. A major influence on the 

calculation period is the so-called maximum permitted relative 

gap. The gap describes the percentage difference between the 

upper and lower bounds of optimization due to the branch-and-

bound approximation method. Since it is an approximation 

method, the result is closer to the actual optimum, the smaller 

the relative gap. As a rule, a relative gap of 0.1 % is used. For 

comparison purposes and to keep the calculation time low, the 

relative gap is set at 2 %. This results in the calculation periods 

for the respective number of steps shown in Table 4. 

Table 4 Calculation duration of the optimization by using MILP. 

Time interval steps duration in sec. 

1 day 96 4,666 

1 week 672 43,932 

2 weeks 1 344 254,4 

3 weeks 2 016 257 

1 month 2 688 350 

5 weeks 3 360 557 

6 weeks 4 032 988 

7 weeks 4 704 1 027 

2 months 5 376 1 122 

3 months 8 064 2 581 

Figure 7 shows the relationship between the number of 

steps and the duration of the calculation. The trend line 

illustrates the non-linear relationship, which is a well-known 

fact in mixed-integer linear programming. 

 

Figure 7 Non-linear relationship between number of steps and 

calculation duration by using MILP. 

5.2 Backward Dynamic Programming (DP) – 
Calculation time and main memory 

The calculation duration of the model with backward 

dynamic programming always behaves linearly depending on 

the number of steps. The data situation has no influence on the 

calculation time of the optimization problem. Furthermore, 

there is no duality gap, as is the case in mixed-integer linear 

programming. Table 5 shows all important results of backward 

dynamic programming. 

Table 5 Calculation duration of the optimization by using DP. 

Time interval steps duration memory 

  in sec. in MB 

1 day 96 0,18 13 

1 week 672 0,25 27 

2 weeks 1 344 0,29 45 

3 weeks 2 016 0,30 49 

1 month 2 688 0,35 61 

5 weeks 3 360 0,40 83 

6 weeks 4 032 0,44 101 

7 weeks 4 704 0,48 118 

2 months 5 376 0,59 160 

3 months 8 064 0,86 284 

4 months 10 752 1,14 422 

6 months 16 128 1,67 664 

8 months 21 504 2,15 850 

9 months 24 192 2,33 953 

1 year 35 040 3,72 1 515 
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Dynamic programming has a linear relationship between 

computation time and number of steps. Figure 8 illustrates this 

behavior. 

 

Figure 8 Linear relationship between number of steps and 

calculation duration by using DP. 

Another aspect of interest in studying the results is the 

amount of memory needed for optimization. There are no 

measurement results for the mixed-integer linear 

programming. Figure 9 shows the linear relationship between 

memory requirements and number of steps for backward 

dynamic programming. 

 

Figure 9 Linear relationship between number of steps and 

memory needed by using DP. 

5.3 Deductions 

There is no doubt that backward dynamic programming 

has a significant advantage in computation time over mixed-

integer linear programming. Especially with increasing 

number of steps, the time difference is significantly greater. In 

addition, the calculation time for mixed-integer linear 

programming scales disproportionately with increasing 

number of steps. As a result, the size of the problem must be 

kept small or the granularity of time as large as possible. 

Table 6 summarizes the measured calculation durations. 

Table 6 Comparison of MILP and DP in terms of calculation 

duration. 

Time interval steps MILP DP 

  in seconds 

1 day 96 4,67 0,18 

1 week 672 43,93 0,25 

2 weeks 1 344 254,4 0,29 

1 month 2 688 350 0,35 

3 months 8 064 2 581 0,86 

1 year 35 040 n.v. 3,72 

 

The data situation has a significant influence on the 

duration of the calculation. During this work, it was observed 

that, depending on the market price, the calculation period can 

vary considerably. In times of extreme market situations, 

caused for example by very low or very high market prices, 

the model can be solved relatively quickly. The reason is that 

it is clear for the algorithm that the optimal schedule dictates 

either standstill or maximum technical performance. In times 

when the market price is in the range of marginal costs, the 

optimization takes more time to decide which power step 

would be the best. 

6 Conclusio 

In this chapter a final statement of the work is made and 

subsequently dealt with topics that are of interest in the further 

course of the research, but which could not be discussed in the 

context of the research. 

The developed application always tries to calculate the best 

schedule. However, due to various influences, it may happen 

that the predetermined power value cannot be driven. The only 

information that is classified as relevant for a ramp process for 

optimization, for example, is the previously-initiated 

downtime. The algorithm has no detailed information about 

the current availability of the power plant block. 

As the work has shown, prefer a recursive solution using 

backward dynamic programming. In the work, it has been 

proven that when calculating schedules for longer periods of 

finer time granularity, backward dynamic programming of 

mixed-integer linear programming is clearly superior. On the 

other hand, however, it must be considered that the 

development of a model that uses the dynamic programming 

method turns out to be much more complex than a model that 

works with a solver. The big advantage of using a solver like 

GUROBI lies in the simplicity of the model implementation. 

The decision of which solution method to use depends on the 

type of application and the problem. In the case of the present 

problem, a dynamic method with a minimum computation 

time is to be preferred, since the optimization is called very 

frequently. In addition, their result is time-critical, since it is 

used for decisions in the real market and it is important that an 

optimization process has the shortest possible calculation time. 

As the results have shown, the linearization of the quadratic 

inverse production function brings a relatively large time 

saving. The reason for this lies in the reduction of the quadratic 

optimization problem to a linear one. GUROBI can solve a 
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quadratic problem. For an exact solution, a quadratic 

formulation would be necessary. Here it should be asked 

whether such a mathematically more elaborate formulation 

provides far better results in terms of accuracy, although the 

circumstance of the calculation duration plays a role. 

Although the limitations on the start and end points have 

very little effect on the result, they are further simplifications 

that adversely affect the accuracy of the result. 

One question that could not be resolved by this research is 

the inclusion of storage. Storages often come in resource 

planning, which were not included in the course of this work. 

It is undisputed that the implementation of memory increases 

the level of complexity even further. Thus, the integration of 

memories is a worthwhile task for future investigations. 

When developing the algorithm, special cases were 

detected that could provide further performance enhancements 

through intelligent enhancements. For example, the priority 

list that estimates the optimal predecessor could still be 

optimized. It would be fundamentally possible to estimate not 

just the next predecessor, but several, based on one step, so 

that complete path elements can be processed faster. In a 

market situation of very high or very low market prices, the 

preferred electrical retrieval performance would already be 

known and thus several time steps could be skipped. Another 

interesting aspect is the introduction of neural networks. For 

certain sections of the program, substitution by neural 

networks would be fundamental. To be able to answer this 

question unambiguously, further investigations are needed. 
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